有关高中数学说课稿4篇.docx





《有关高中数学说课稿4篇.docx》由会员分享,可在线阅读,更多相关《有关高中数学说课稿4篇.docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、有关高中数学说课稿4篇有关高中数学说课稿4篇 作为一位不辞辛劳的人民教师,编写说课稿是必不可少的,说课稿有助于提高教师的语言表达能力。如何把说课稿做到重点突出呢?以下是小编精心整理的高中数学说课稿4篇,欢迎大家分享。 高中数学说课稿篇1 一、教材分析: 1、教材的地位与作用: 线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解
2、决实际问题的能力。 2、教学重点与难点: 重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。 难点:在可行域内,用图解法准确求得线性规划问题的最优解。 二、目标分析: 在新课标让学生经历“学数学、做数学、用数学”的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。 知识目标: 1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行 域和最优解等概念; 2、理解线性规划问题的图解法; 3、会利用图解法求线性目标函数的最优解 能力目标: 1、在应用图解法解题的过程中培养学生的观察能力、理解能力。 2、在变式训练的过程中,培养学生的分析能力、探索能力。 3
3、、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。 情感目标: 1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。 2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神; 3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。 三、过程分析: 数学教学是数学活动的教学。因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,形成概念;3、反思过程,提炼方法;4、变式演练,深入探究;5、运用新
4、知,解决问题;6、归纳总结,巩固提高。 1、创设情境,提出问题: 在课堂教学的开始,我以一组生动的动画(配图片)描述出在神奇的数学王国里,有一种算法广泛应用于工农业、军事、交通运输、决策管理与规划等领域,应用它已节约了亿万财富,还被列为20世纪对科学发展和工程实践影响最大的十大算法之一。它为何有如此大的魅力?它又是怎样的一种神奇算法呢?我以景激情,以情激思,点燃学生的求知欲,引领学生进入学习情境。 高中数学说课稿篇2 一、教材分析 1、教材所处的地位和作用 奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。 奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,
5、从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。 2、学情分析 从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。 从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、 3、教学目标 基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标: 1、能判断一些简单函数的奇
6、偶性。 2、能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。 经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。 通过自主探索,体会数形结合的思想,感受数学的对称美。 从课堂反应看,基本上达到了预期效果。 4、教学重点和难点 重点:函数奇偶性的概念和几何意义。 几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把函数的奇偶性概
7、念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。 难点:奇偶性概念的数学化提炼过程。 由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。因此我把奇偶性概念的数学化提炼过程设计为本节课的难点。 二、教法与学法分析 1、教法 根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主
8、动探索问题的积极状态,从而培养思维能力。从课堂反应看,基本上达到了预期效果。 2、学法 让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。 三、教学过程 具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下面我对这六个环节进行说明。 (一)设疑导入、观图激趣 由于本节内容相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。 用多媒体展示一组图片,使学生感受到生
9、活中的对称美。再让学生观察几个特殊函数图象。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。 (二)指导观察、形成概念 在这一环节中共设计了2个探究活动。 探究1、2数学中对称的形式也很多,这节课我们就以函数和=x以及和为例展开探究。这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律?引导学生先把它们具体化,再用数学符号表示。借助课件演示(令比较得出等式,再令,得到)让学生发现两个函数的对称性反应到函数值上具有的特性,()然后
10、通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个都成立。最后给出偶函数(奇函数)定义(板书)。 在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。 (三)学生探索、领会定义 探究3下列函数图象具有奇偶性吗? 设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是-定义域关于原点对称。(突破了本节课的难点) (四)知识应用,巩固提高 在这一环节我设计了4道题 例1判断下列函数的奇偶性 选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。 例1设计意图是归纳出判断奇偶性的步骤:
11、 (1)先求定义域,看是否关于原点对称; (2)再判断f(-x)=-f(x)还是f(-x)=f(x)。 例2判断下列函数的奇偶性: 例3判断下列函数的奇偶性: 例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型? 例4(1)判断函数的奇偶性。 (2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗? 例4设计意图加强函数奇偶性的几何意义的应用。 在这个过程中,我重点关注了学生的推理过程的表述。通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。 (五)总结反馈 在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿
12、于探究过程的始终,切实体现了启发式、问题式教学法的特色。 在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。 (六)分层作业,学以致用 必做题:课本第36页练习第1-2题。 选做题:课本第39页习题1、3A组第6题。 思考题:课本第39页习题1、3B组第3题。 设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。 高中数学说课
13、稿篇3 一、教材分析 1、从在教材中的地位与作用来看 等比数列的前n项和是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。 2、从学生认知角度看 从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错
14、。 3、学情分析 教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。 4、重点、难点 教学重点:公式的推导、公式的特点和公式的运用。 教学难点:公式的推导方法和公式的灵活运用。 公式推导所使用的错位相减法是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。 二、目标分析 知识与技能目标: 理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。 过程与方法目标: 通过对公式推导方法的探索与发现,向学生渗
15、透特殊到一般、类比与转 化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。 情感与态度价值观: 通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。 三、过程分析 学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程: 1、创设情境,提出问题 在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 有关 高中数学 说课稿

限制150内