高中数学必修五2.4等比数例教案课时训练练习教案课件.doc
《高中数学必修五2.4等比数例教案课时训练练习教案课件.doc》由会员分享,可在线阅读,更多相关《高中数学必修五2.4等比数例教案课时训练练习教案课件.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2. 4等比数列教案(一) 授课类型:新授教学目标(一) 知识与技能目标1.等比数列的定义;2.等比数列的通项公式(二) 过程与能力目标1.明确等比数列的定义;2.掌握等比数列的通项公式,会解决知道,n中的三个,求另一个的问题教学重点1.等比数列概念的理解与掌握;2.等比数列的通项公式的推导及应用教学难点等差数列等比的理解、把握和应用教学过程一、情境导入: 下面我们来看这样几个数列,看其又有何共同特点?(教材上的P48面)1,2,4,8,16,263; 1,; 1,; 对于数列,= ; =2(n2)对于数列, =;(n2)对于数列,= ; =20(n2)共同特点:从第二项起,第一项与前一项的比
2、都等于同一个常数二、检查预习1等比数列的定义2.等比数列的通项公式: , , 3an成等比数列4求下面等比数列的第4项与第5项:(1)5,15,45,;(2)1.2,2.4,4.8,;(3),.三、合作探究(1)等比数列中有为0的项吗? (2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)常数列都是等比数列吗?四交流展示1 等比数列的定义:一般地,若一个数列从第二项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列.这个常数叫等比数列的公比,用字母q表示(q0),即:=q(q0)注:(1)“从第二项起”与“前一项”之比为常数q; 成等比数列=q(,q
3、0)(2) 隐含:任一项(3) q=1时,an为常数数列 (4)既是等差又是等比数列的数列:非零常数列2.等比数列的通项公式1: 观察法:由等比数列的定义,有:; ; 迭乘法:由等比数列的定义,有:;所以,即等比数列的通项公式2: 五精讲精练例1一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项.解: 点评:考察等比数列项和通项公式的理解变式训练一:教材第52页第1例2求下列各等比数列的通项公式: 解:(1) (2)点评:求通项时,求首项和公比变式训练二 :教材第52页第2例3教材P50面的例1。例4 已知无穷数列, 求证:(1)这个数列成等比数列; (2)这个数列中的任一项是
4、它后面第五项的; (3)这个数列的任意两项的积仍在这个数列中证:(1)(常数)该数列成等比数列 (2),即: (3), 且,(第项) 变式训练三:教材第53页第3、4题六、课堂小结: 1.等比数列的定义;2.等比数列的通项公式及变形式七、板书设计八、课后作业阅读教材第4850页;2.4等比数列教案(二) 授课类型:新授教学目标(一) 知识与技能目标进一步熟练掌握等比数列的定义及通项公式;(二) 过程与能力目标利用等比数列通项公式寻找出等比数列的一些性质(三) 方法与价值观培养学生应用意识教学重点,难点(1)等比数列定义及通项公式的应用;(2)灵活应用等比数列定义及通项公式解决一些相关问题教学过
5、程二问题情境1情境:在等比数列中,(1)是否成立?是否成立?(2)是否成立?2问题:由情境你能得到等比数列更一般的结论吗?三学生活动对于(1),成立同理 :成立对于(2),成立一般地:若,则四建构数学1若为等比数列,则由等比数列通项公式得:,故且, ,2若为等比数列,则由等比数列的通项公式知:,则 五数学运用1例题:例1(1)在等比数列中,是否有()? (2)在数列中,对于任意的正整数(),都有,那么数列一定是等比数列解:(1)等比数列的定义和等比数列的通项公式数列是等比数列,即()成立(2)不一定例如对于数列,总有,但这个数列不是等比数列例2 已知为,且,该数列的各项都为正数,求的通项公式。
6、解:设该数列的公比为,由得,又数列的各项都是正数,故,则 例3已知三个数成等比数列,它们的积为27,它们的平方和为91,求这三个数。解:由题意可以设这三个数分别为,得:,即得或,或, 故该三数为:1,3,9或,3,或9,3,1或,3,说明:已知三数成等比数列,一般情况下设该三数为例4 如图是一个边长为的正三角形,将每边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图形(2),如此继续下去,得图形(3)求第个图形的边长和周长解:设第个图形的边长为,周长为由题知,从第二个图形起,每一个图形的边长均为上一个图形的边长的,数列是等比数列,首项为,公比为要计算第个图形的周长,只要计算第个图形
7、的边数第一个图形的边数为,从第二个图形起,每一个图形的边数均为上一个图形的边数的倍,第个图形的边数为2练习:1已知是等比数列且,则 2已知是等比数列,且公比为整数,则 3已知在等比数列中,则 五回顾小结:1等比数列的性质(要和等差数列的性质进行类比记忆)六课外作业:书练习第1,2题,习题第6,8,9,10题七板书设计课内探究学案(一 )学习目标1.明确等比数列的定义;2.掌握等比数列的通项公式,会解决知道,n中的三个,求另一个的问题教学重点1.等比数列概念的理解与掌握;2.等比数列的通项公式的推导及应用教学难点等差数列等比的理解、把握和应用(二)学习过程1、自主学习、合作探究1.等差数列的证明
8、:();(、),;证明为常数(对于适用);证明。2.当引入公比辅助解题或作为参数时,注意考虑是否需要对和进行分类讨论。3.证明数列是等比数列、不是等比数列,讨论数列是否等比数列,求解含参等比数列中的参数这四类问题同源。4.注意巧用等比数列的主要性质,特别是()和()。5. 三数成等比数列,一般可设为、;四数成等比数列,一般可设为、;五数成等比数列,一般可设为、。2、精讲点拨三、典型例题例1 数列为各项均为正数的等比数列,它的前项和为80,且前项中数值最大的项为54,它的前项和为6560,求首项和公比。解:若,则应有,与题意不符合,故。依题意有:得即得或(舍去),。由知,数列的前项中最大,得。将
9、代入(1)得 (3),由得,即 (4),联立(3)(4)解方程组得。例2 (1)已知为等比数列,求的通项公式。(2)记等比数列的前项和为,已知,求和公比的值。解:(1)设等比数列的公比为(),则,即也即,解此关于的一元方程得或。,或。(2)在等比数列中,有,又,联立解得或,由此知,而,从而解得或。例3 已知数列,其中,且数列(为常数)为等比数列,求常数。解:为等比数列,那么,将代入并整理得,解之得或。例4 设、是公比不相等的两个等比数列,证明数列不是等比数列。解:设、分别是公比为、()的两个等比数列,要证明不是等比数列,我们只需证即可。事实上,又、,数列不是等比数列。3、反思总结4当堂检测1.
10、已知等比数列中,则其前3项的和的取值范围是( ) 2.已知是等比数列,则 3.若实数、成等比数列,则函数与轴的交点的个数为( ) 无法确定4. 在数列中,且是公比为()的等比数列,该数列满足(),则公比的取值范围是( ) 5.设数列满足(,),且,则_。6.设为公比的等比数列,若和是方程的两根,则_。7.设是由正数组成的等比数列,公比,且,则_。8.设两个方程、的四个根组成以2为公比的等比数列,则_。9.设数列为等比数列,已知,。(1)求等比数列的首项和公比;(2)求数列的通项公式。10.设数列的前项和为,已知(1)证明:当时,是等比数列;(2)求的通项公式。11.已知数列和满足:,其中为实数
11、,为正整数。(1)对任意实数,证明数列不是等比数列;(2)试判断数列是否为等比数列,并证明你的结论;(3)设,为数列的前项和。是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由。【当堂检测】1. 解析:设数列的公比为,那么,函数()的值域为,从而求得的取值范围。2. 解析:等比数列的公比,显然数列也是等比数列,其首项为,公比,。3. 解析:、成等比数列,二次函数的判别式,从而函数与轴无交点。4. ,而,即,解得,而,故公比的取值范围为。5. 解析:,即,也即,从而数列是公比为的等比数列。6.解析:的两根分别为和,从而、,。7.解析:,。8.解析:设该等比数列为、,
12、,从而、,。9.解:(1)对于等式,令得;令得,。(2),则 得 得:。10.解:(1)证明:由题意知,且,两式相减得,即 当时,由知,于是又,所以是首项为1,公比为2的等比数列。(2)当时,由(1)知,即; 当时,由得11.解:(1)证明:假设存在一个实数,使是等比数列,则有,即,矛盾。所以不是等比数列.(2)解: 。又,所以当时,这时不是等比数列;当时,由上可知,。故当时,数列是以为首项,为公比的等比数列。(3)由(2)知,当时,不满足题目要求。,故知,可得,要使对任意正整数成立,即,得 令,则当为正奇数时,;当为正偶数时,。所以的最大值为,最小值为。于是,由式得。当时,由知,不存在实数满
13、足题目要求;当时,存在实数,使得对任意正整数,都有,且的取值范围是。等比数列学案一、课前预习(一)预习目标1.理解等比数列的定义;2.了解等比数列的通项公式(二)自我探究下面我们来看这样几个数列,看其又有何共同特点?(教材上的P48面)1,2,4,8,16,263; 1,; 1,; 对于数列,= ; =2(n2)对于数列, =;(n2)对于数列,= ; =20(n2)共同特点: (1)“从第二项起”与“前一项”之比为常数q; 成等比数列=q(,q0)(2) 隐含:任一项(3) q=1时,an为常数数列 (4)既是等差又是等比数列的数列:非零常数列(四)提出疑惑(五)预习内容1、等比数列的定义
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 2.4 等比 教案 课时 训练 练习 课件
限制150内