高一数学必修一知识点归纳总结三篇.docx
《高一数学必修一知识点归纳总结三篇.docx》由会员分享,可在线阅读,更多相关《高一数学必修一知识点归纳总结三篇.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一数学必修一知识点归纳总结三篇 高一数学是高中数学的基础,想要学好高一数学理清各个知识点很重要,下面就是小编给大家带来的高一数学必修一知识点归纳,希望能帮助到大家! 高一数学必修一知识点归纳1 【集合与函数概念】 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上的山 (2)元素的互异性如:由HAPPY的字母组成的集合H,A,P,Y (3)元素的无序性:如:a,b,c和a,c,b是表示同一个集合 3.集合的表示:如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 (1)用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方
2、法:列举法与描述法。 注意:常用数集及其记法:XKb1.Com 非负整数集(即自然数集)记作:N 正整数集:N_或N+ 整数集:Z 有理数集:Q 实数集:R 1)列举法:a,b,c 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合xR|x-32,x|x-32 3)语言描述法:例:不是直角三角形的三角形 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:x|x2=-5 二、集合间的基本关系 1.“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包
3、含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(55,且55,则5=5) 实例:设A=x|x2-1=0B=-1,1“元素相同则两集合相等” 即:任何一个集合是它本身的子集。AA 真子集:如果AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA) 如果AB,BC,那么AC 如果AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 4.子集个数: 有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集 三、集合的运算 运算类型交集并集补集 定义由所有属
4、于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作A交B),即AB=x|xA,且xB. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作A并B),即AB=x|xA,或xB). 【基本初等函数】 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且_. 当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand). 当是偶数时,正数的次方根有两个,
5、这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成(0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。 注意:当是奇数时,当是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 (二)指数函数及其性质 1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R. 注意:
6、指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 【函数的应用】 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即: 方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 求函数的零点: 1(代数法)求方程的实数根; 2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. 1)0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2)=0,方程有两相等实根(二重根),
7、二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. 3)2,x|x-32 3)语言描述法:例:不是直角三角形的三角形 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:x|x2=-5 二、集合间的基本关系 1.“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(55,且55,则5=5) 实例:设A=x|x2-1=0B=-1,1“元素相同则两集合相等” 即:任何一个集合是它本
8、身的子集。AA 真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA) 如果AB,BC,那么AC 如果AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 u有n个元素的集合,含有2n个子集,2n-1个真子集 二、函数 1、函数定义域、值域求法综合 2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法 5、二次函数根的问题一题多解 &指数函数y=ax aa_ab=aa+b(a0,a、b属于Q) (aa)b=aab(a0,a、b属于Q) (ab)a=aa_ba(a0,a、b
9、属于Q) 指数函数对称规律: 1、函数y=ax与y=a-x关于y轴对称 2、函数y=ax与y=-ax关于x轴对称 3、函数y=ax与y=-a-x关于坐标原点对称 &对数函数y=logax 如果,且,那么: 1+; 2-; 3. 注意:换底公式 (,且;,且;). 幂函数y=xa(a属于R) 1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+)都有定义并且图象都过点(1,1); (2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸; (3)时,幂函数的图象在区间上是减函数.在第一象
10、限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴. 方程的根与函数的零点 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。 即:方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 1(代数法)求方程的实数根; 2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. (1)0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. (2)=0,方程有两相
11、等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. (3)0时,a的方向和a的方向相同,当2,x|x-32 3)语言描述法:例:不是直角三角形的三角形 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:x|x2=-5 二、集合间的基本关系 1.“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(55,且55,则5=5) 实例:设A=x|x2-1=0B=-1,1“元素
12、相同则两集合相等” 即:任何一个集合是它本身的子集。AA 真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA) 如果AB,BC,那么AC 如果AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 u有n个元素的集合,含有2n个子集,2n-1个真子集 三、集合的运算 运算类型交集并集补集 定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作A交B),即AB=x|xA,且xB. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作A并B),即AB=x|xA,或
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 必修 知识点 归纳 总结
限制150内