排列(第3课时)ppt课件.ppt





《排列(第3课时)ppt课件.ppt》由会员分享,可在线阅读,更多相关《排列(第3课时)ppt课件.ppt(48页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、排排 列列一、复习引入:一、复习引入:什么叫做什么叫做从从n n个不同元素中取出个不同元素中取出m m个元素的一个个元素的一个? 从从n n个不同元素中取出个不同元素中取出m m(mnmn)个元素,)个元素,按照一定的顺序排成一列,叫做从按照一定的顺序排成一列,叫做从n n个不同元素个不同元素中取出中取出m m个元素的一个排列个元素的一个排列 从从n个不同的元素中取出个不同的元素中取出m(mn)个元素的个元素的所有排列的个数,叫做从所有排列的个数,叫做从n个不同元素中取出个不同元素中取出m个个元素的元素的排列数排列数. 用符号用符号 表示表示mnA什么叫做什么叫做从从n n个不同元素中取出个不
2、同元素中取出m m个元素的个元素的?)1()2)(1(mnnnnAmn!()!mnnAnm(n,mN*,mn)二、例题讲解:二、例题讲解:例例1 1 某年全国足球甲级(某年全国足球甲级(A组)联赛共有组)联赛共有14个队个队参加,每队都要与其余各队在主、客场分别比赛参加,每队都要与其余各队在主、客场分别比赛一次,共进行多少场比赛?一次,共进行多少场比赛?例例2 2 有有5 5本不同的书,从中选本不同的书,从中选3 3本送给本送给3 3名同学,名同学,每人每人1 1本,共有多少种不同的送法?本,共有多少种不同的送法? 有有5 5种不同的书,要买种不同的书,要买3 3本送给本送给3 3名同学,每人
3、名同学,每人1 1本,共有多少种不同的送法?本,共有多少种不同的送法?例例3 3 某信号共用红、黄、蓝某信号共用红、黄、蓝3 3面旗面旗从上到下挂在从上到下挂在竖直的旗杆上表示,每次可以任挂竖直的旗杆上表示,每次可以任挂1 1面、面、2 2面或面或3 3面,并且不同的顺序表示不同的信号,一共可以面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?表示多少种不同的信号?变式:变式:将题中的将题中的“3 3面旗面旗”改为改为“3 3色旗色旗”,结论如何?结论如何?三、课堂练习:三、课堂练习:1、20位同学互通一封信,那么通信次数是多位同学互通一封信,那么通信次数是多少?少?2、由数字、
4、由数字1、2、3、4、5、6可以组成多少个可以组成多少个没有重复数字的正整数?没有重复数字的正整数?3、5个班,有个班,有5名语文老师、名语文老师、5名数学老师、名数学老师、5名英语老师,每个班上配一名语文老师、一名名英语老师,每个班上配一名语文老师、一名数学老师和一名英语老师,问有多少种不同的数学老师和一名英语老师,问有多少种不同的搭配方法?搭配方法?)(380220次A)(1956665646362616个AAAAAA1728000555555AAA拓展性练习:拓展性练习:1、把、把15个人分成前后三排,每排个人分成前后三排,每排5人,不同的排法数为(人,不同的排法数为( )2355510
5、515AAAAD1515AC3355510515AAAAB510515AAA2、计划展出、计划展出10幅不同的画,其中幅不同的画,其中1幅水彩画,幅水彩画,4幅油画,幅油画,5幅国幅国画,排成一行陈列,要求同一品种的画必须连在一起,那么不画,排成一行陈列,要求同一品种的画必须连在一起,那么不同的陈列方式有(同的陈列方式有( )5544AAA554433AAAB554413AAAC554422AAAD3、由、由1、2、3、4、5这这5个数字组成无重复数字的五位数,其中个数字组成无重复数字的五位数,其中奇数有奇数有 个个.CB724413 AA有限制条件的排列问题有限制条件的排列问题例例1 1 5
6、名学生和名学生和1名老师站成一排照相,老名老师站成一排照相,老师不能站排头,也不能站排尾,问有多少师不能站排头,也不能站排尾,问有多少种不同的站法?种不同的站法?返回第8张例例2 2 5个人站成一排个人站成一排共有多少种排法?共有多少种排法? 其中甲必须站在中间,有多少种不同的排法?其中甲必须站在中间,有多少种不同的排法? 其中甲、乙两人必须相邻,有多少种不同的其中甲、乙两人必须相邻,有多少种不同的排法?排法? 其中甲、乙两人不相邻,有多少种不同的排其中甲、乙两人不相邻,有多少种不同的排法?法? 其中甲、乙两人不站排头和排尾,有多少种其中甲、乙两人不站排头和排尾,有多少种不同的排法?不同的排法
7、? 其中甲不站排头,乙不站排尾,有多少种不其中甲不站排头,乙不站排尾,有多少种不同的排法?同的排法?例例2 2 5个人站成一排个人站成一排共有多少种排法?共有多少种排法? 其中甲必须站在中间,有多少种不同的排法?其中甲必须站在中间,有多少种不同的排法?解:解: 种排法种排法.12055A 甲的位置已定,其余甲的位置已定,其余4人可任意排列,人可任意排列,有有 种种.2444A例例2 2 5个人站成一排个人站成一排其中甲、乙两人必须相邻,有多少种不同的其中甲、乙两人必须相邻,有多少种不同的排法?排法?解:解: 甲、乙必须相邻,可把甲、乙两人捆绑甲、乙必须相邻,可把甲、乙两人捆绑成一个元素,两人之
8、间有成一个元素,两人之间有 种排法,种排法,22A484422 AA再与其他再与其他3个元素作全排列,共有个元素作全排列,共有 种种排法排法.把须相邻的元素把须相邻的元素 看成一个整体,看成一个整体,称为称为捆绑法捆绑法.例例2 2 5个人站成一排个人站成一排其中甲、乙两人不相邻,有多少种不同的排其中甲、乙两人不相邻,有多少种不同的排法?法?解:解: 让甲、乙以外的三人作全排列,有让甲、乙以外的三人作全排列,有 种排法,种排法,33A再把甲、乙两人插入三人形成的再把甲、乙两人插入三人形成的4个空挡位置,个空挡位置,有有 种方法,共有种方法,共有 种排法种排法.24A722433 AA不相邻问题
9、不相邻问题用用插入法插入法.另解:另解:(排除法排除法)72442255AAA例例2 2 5个人站成一排个人站成一排其中甲、乙两人不站排头和排尾,有多少种其中甲、乙两人不站排头和排尾,有多少种不同的排法?不同的排法?解:解: 甲、乙两人不站排头和排尾,则这两个位置可甲、乙两人不站排头和排尾,则这两个位置可从其余从其余3人中选人中选2人来站,有人来站,有 种排法,剩下的人有种排法,剩下的人有 种排法,共有种排法,共有 种排法种排法.23A33A363323 AA(特殊位置预置法特殊位置预置法)(特殊元素预置法特殊元素预置法)363323 AA(排除法排除法)362332233131255AAAA
10、AA例例2 2 5个人站成一排个人站成一排其中甲不站排头,乙不站排尾,有多少种不其中甲不站排头,乙不站排尾,有多少种不同的排法?同的排法?解:解: 甲站排头有甲站排头有 种排法,乙站排尾有种排法,乙站排尾有 种排法,但两种情况都包含了种排法,但两种情况都包含了“甲站排头,乙甲站排头,乙站排尾站排尾”的情况,有的情况,有 种排法,种排法,所以共有所以共有 种排法种排法.44A44A33A782334455AAA用直接法,如何分类?用直接法,如何分类?一类:甲站排尾一类:甲站排尾二类:甲站中间二类:甲站中间44A331313AAA所以共有所以共有 种排法种排法.7833131344AAAA例例3
11、3 用用0到到9这十个数字,可以组成多少个没有重这十个数字,可以组成多少个没有重复数字的三位数?复数字的三位数?分析分析1:由于百位上的数字不能为:由于百位上的数字不能为0,只能从,只能从1到到9这这9个数字中任选个数字中任选一个,有一个,有 种选法,再排十位和个位上的数字,可以从余下的种选法,再排十位和个位上的数字,可以从余下的9个数字中任选个数字中任选2个,有个,有 种选法,根据分步计数原理,所求三位种选法,根据分步计数原理,所求三位数的个数是:数的个数是:19A29A6482919 AA分析分析2:所求的三位数可分为:不含数字:所求的三位数可分为:不含数字0的,有的,有 个;含有数字个;
12、含有数字0的,有的,有 个,根据分类计数原理,所求三位数的个数是:个,根据分类计数原理,所求三位数的个数是:39A292A64822939 AA分析分析3:从:从0到到9这十个数字中取这十个数字中取3个的排列数为个的排列数为 ,其中以,其中以0为百为百位数字的排列数为位数字的排列数为 ,故所求三位数的个数是:,故所求三位数的个数是:310A29A64829310 AA(特殊位置预置法特殊位置预置法)(特殊元素预置法特殊元素预置法)(排除法排除法)三、课堂练习:三、课堂练习:1、4个学生和个学生和3个老师排成一排照相,老师不能排两端,个老师排成一排照相,老师不能排两端,且老师必须排在一起的不同排
13、法种数是(且老师必须排在一起的不同排法种数是( ) A . B . C . D .77A3344AA223322AAA333324AAA2、停车场上有一排七个停车位,现有四辆汽车要停放,、停车场上有一排七个停车位,现有四辆汽车要停放,若要使三个空位连在一起,则停放的方法有若要使三个空位连在一起,则停放的方法有 种种.3、用、用0、1、2、3、4、5六个数字,可组成多少个无重六个数字,可组成多少个无重复数字且不能被复数字且不能被5整除的五位数?整除的五位数?4、在、在7名运动员中选出名运动员中选出4名组成接力队,参加名组成接力队,参加4100米米接力赛,那么甲、乙两人都不跑中间两棒的安排方法有接
14、力赛,那么甲、乙两人都不跑中间两棒的安排方法有多少种?多少种?D55A法一:法一:)(384341414个AAA法二:法二:)(3843414454515个AAAAA)(400252235121245种AAAAAA排列复习课排列复习课江苏省兴化楚水实验学校江苏省兴化楚水实验学校 徐信生徐信生 cs_;cs_yyyy年年M月月d日星期日星期W一、复习引入:一、复习引入:排列数排列数: 从n个不同元素中取出m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从nm个元素的排列数.n个不同元素中取出叫做从所有排列的个数,个元素的个不同元素中取出 m(mn)排列排列:
15、排列数公式排列数公式:) 1()2)(1(mnnnnAmn!mn )!n (练习:练习: 1) 由数字由数字1,2,3,4,5 组成没有重复数字的五位数,其组成没有重复数字的五位数,其中偶数共有中偶数共有 个。个。 2) 用用 0,1,2,3,4,5 组成没有重复数字的三位数,共组成没有重复数字的三位数,共有有 个。个。 3)五名同学排成一排,其中的甲乙两同学必须站在两端)五名同学排成一排,其中的甲乙两同学必须站在两端 ,共有共有 种不同排法。种不同排法。48100124)用数字)用数字1, 2, 3可写出多少个没有重复数字且小于可写出多少个没有重复数字且小于1000的的正整数?正整数?153
16、32313AAA解排列问题的常用技巧解排列问题的常用技巧 解排列问题,首先必须认真审题,明确问解排列问题,首先必须认真审题,明确问题是否是排列问题,其次是抓住问题的本质特题是否是排列问题,其次是抓住问题的本质特征,灵活运用基本原理和公式进行分析解答,征,灵活运用基本原理和公式进行分析解答,同时,还要注意讲究一些基本策略和方法技巧,同时,还要注意讲究一些基本策略和方法技巧,使一些看似复杂的问题迎刃而解使一些看似复杂的问题迎刃而解. 总的原则总的原则合理分类和准确分步合理分类和准确分步 解排列问题,应按元素的性质进行分类,解排列问题,应按元素的性质进行分类,事情的发生的连续过程分步,做到分类标准明
17、事情的发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。确,分步层次清楚,不重不漏。二、例题讲解:二、例题讲解:根据分步及分类计数原理,不同的站法共有根据分步及分类计数原理,不同的站法共有例例1 6个同学和个同学和2个老师排成一排照相,个老师排成一排照相, 2个个老师站中间,学生甲不站排头,学生乙不站排老师站中间,学生甲不站排头,学生乙不站排尾,共有多少种不同的排法?尾,共有多少种不同的排法?1)若甲在排尾上,则剩下的)若甲在排尾上,则剩下的5人可自由安排,有人可自由安排,有 种方法种方法.55A2) 若甲在第若甲在第2、3、6、7位,则位,则排尾的排法有排尾的排法有 种,种,1位
18、的排法位的排法有有 种种, 第第2、3、6、7位的排法有位的排法有 种种,根据分步计数,根据分步计数原理,不同的站法有原理,不同的站法有 种。种。14A14A44A441414AAA再安排老师,有再安排老师,有2种方法。种方法。.(1008)(244141455种)AAAA解法解法2 见练习见练习3(4)解法解法1 分析:先安排甲,按照要求对其进行分类,分两类:分析:先安排甲,按照要求对其进行分类,分两类:(1)0,1,2,3,4,5可组成多少个无重复数字可组成多少个无重复数字的五位偶数?的五位偶数?个位数为零:个位数为零:个位数为个位数为2或或4:45A341412AAA 312341412
19、45AAAA所以所以练练 习习 1(2)0,1,2,3,4,5可组成多少个无重复数可组成多少个无重复数字且能被五整除的五位数?字且能被五整除的五位数?分类:后两位数字为分类:后两位数字为5或或0:个位数为个位数为0:45A个位数为个位数为5:216341445 AAA3414AA (3)0,1,2,3,4,5可组成多少个无重复数可组成多少个无重复数字且大于字且大于31250的五位数?的五位数?分类:分类:(4)31250是由是由0,1,2,3,4,5组成的无重复组成的无重复数字的五位数中从小到大第几个数?数字的五位数中从小到大第几个数?3251231234134512 AAAAAA275325
20、4515 AA27512212233445 AAAA方法一:(排除法)方法一:(排除法)方法二:(直接法方法二:(直接法)例例2、由数字、由数字1、2、3、4、5可以组成没有可以组成没有重复数字的五位数重复数字的五位数120个,把这些数从小个,把这些数从小到大排成一列数,构成一个数列:到大排成一列数,构成一个数列:12345,12354, 54321, 问:所有五位数各位数上数字之和是多少?问:所有五位数各位数上数字之和是多少?所有五位数的和是多少?所有五位数的和是多少?万位上的所有数字之和为:万位上的所有数字之和为:360)54321 (44A个位上的所有数字之和为:个位上的所有数字之和为:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列 课时 ppt 课件

限制150内