2022年高中物理竞赛的数学基础 .pdf
《2022年高中物理竞赛的数学基础 .pdf》由会员分享,可在线阅读,更多相关《2022年高中物理竞赛的数学基础 .pdf(45页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、普通物理的数学基础选自赵凯华老师新概念力学一、微积分初步物理学研究的是物质的运动规律, 因此我们经常遇到的物理量大多数是变量,而我们要研究的正是一些变量彼此间的联系。这样,微积分这个数学工具就成为必要的了。 我们考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的。 所以我们在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整, 而是较多地借助于直观并密切地结合物理课的需要。至于更系统和更深入地掌握微积分的知识和方法,读者将通过高等数学课程的学习去完成。1函数及其图形本节中的不少内容读者在初等数
2、学及中学物理课中已学过了,现在我们只是把它们联系起来复习一下。11 函数自变量和因变量绝对常量和任意常量在数学中函数的功能是这样定义的:有两个互相联系的变量x 和 y,如果每当变量 x 取定了某个数值后, 按照一定的规律就可以确定y 的对应值,我们就称 y 是 x 的函数,并记作y=f(x ),(A1)其中 x 叫做自变量, y 叫做因变量, f 是一个函数记号,它表示y 和 x 数值的对应关系。有时把y=f (x)也记作 y=y(x)。如果在同一个问题中遇到几个不同形式的函数,我们也可以用其它字母作为函数记号,如 (x)、( x)等等。 常见的函数可以用公式来表达,例如ex等等。在函数的表达
3、式中,除变量外,还往往包含一些不变的量,如上面切问题中出现时数值都是确定不变的,这类常量叫做绝对常量; 另一类如a、b、c 等,它们的数值需要在具体问题中具体给定,这类常量叫做任意常量。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 45 页 - - - - - - - - - 在数学中经常用拉丁字母中最前面几个(如a、b、c)代表任意常量,最后面几个( x、y、z)代表变量。当 y=f (x)的具体形式给定后,我们就可以确定与自变量的任一特定值x0相对应的函数值 f (
4、x0)。例如:(1)若 y=f (x)=3+2x,则当 x=-2 时 y=f (-2)=3+2(-2)=-1一般地说,当 x=x0时,y=f (x0)=3+2x012 函数的图形在解析几何学和物理学中经常用平面上的曲线来表示两个变量之间的函数关系,这种方法对于我们直观地了解一个函数的特征是很有帮助的。 作图的办法是先在平面上取一直角坐标系,横轴代表自变量x,纵轴代表因变量(函数值) y=f(x)这样一来,把坐标为( x,y)且满足函数关系y=f(x)的那些点连接起来的轨迹就构成一条曲线,它描绘出函数的面貌。 图 A-1 便是上面举的第一个例子y=f(x)=3+2x的图形,其中 P1,P2,P3
5、,P4,P5各点的坐标分别为( -2,-1 )、( -1,1)、( 0,3)、( 1,5)、( 2,7),各点连接成一根直线。图 A-2 是第二个例子各点连接成双曲线的一支。13 物理学中函数的实例反映任何一个物理规律的公式都是表达变量与变量之间的函数关系的。下面我们举几个例子。(1)匀速直线运动公式s=s0vt , (A2)此式表达了物体作匀速直线运动时的位置s 随时间 t 变化的规律,在这里t 相当于自变量 x,s 相当于因变量 y,s 是 t 的函数。因此我们记作s=s(t )s0vt ,(A3)式中初始位置 s0和速度 v 是任意常量, s0与坐标原点的选择有关, v 对于每个匀速直线
6、运动有一定的值,但对于不同的匀速直线运动可以取不同的值。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 45 页 - - - - - - - - - 图 A-3 是这个函数的图形, 它是一根倾斜的直线。 下面我们将看到, 它的斜率等于 v(2)匀变速直线运动公式v=v0at ,(A5)两式中 s 和 v 是因变量,它们都是自变量t 的函数,因此我们记作vv(t )v0t at (A7)图 A-4a、4b分别是两个函数的图形,其中一个是抛物线,一个是直线。(A6)和(A7)
7、式是匀变速直线运动的普遍公式,式中初始位置s0、初速v0和加速度 a 都是任意常量, 它们的数值要根据讨论的问题来具体化。例如在讨论自由落体问题时,如果把坐标原点选择在开始运动的地方,则s00,v00,ag9.8ms2,这时( A6)和(A7)式具有如下形式:vv(t )gt (A9)这里的 g可看作是绝对常量,式中不再有任意常量了。(3)玻意耳定律PV C(A10)上式表达了一定质量的气体, 在温度不变的条件下, 压强 P和体积 V之间的函数关系,式中的C是任意常量。我们可以选择V为自变量, P为因变量,这样,( A10)式就可写作它的图形和图 A-2 是一样的,只不过图中的x、y 应换成
8、V、P在(A10)式中我们也可以选择P为自变量, V为因变量,这样它就应写成由此可见,在一个公式中自变量和因变量往往是相对的。(4)欧姆定律名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 45 页 - - - - - - - - - UIR(A13)当我们讨论一段导线中的电流I 这样随着外加电压 U而改变的问题时, U是自变量, I 是因变量, R是常量。这时,( A13)式应写作即 I 与 U成正比。应当指出, 任意常量与变量之间的界限也不是绝对的。例如,当我们讨论串联
9、电路中电压在各电阻元件上分配问题时,由于通过各元件的电流是一样的,( A13)式中的电流 I 成了常量,而 R是自变量, U是因变量,于是UU(R)IR,(A15)即 U与 R成正比。但是,当我们讨论并联电路中电流在各分支里的分配问题时,由于各分支两端具有共同的电压,(A13)式中的 U就成了常量,而R为自变量, I 是因变量,于是即 I 与 R成反比。总之,每个物理公式都反映了一些物理量之间的函数关系,但是其中哪个是自变量,哪个是因变量,哪些是常量,有时公式本身反映不出来,需要根据我们所要讨论的问题来具体分析。2导数21 极限如果当自变量 x 无限趋近某一数值x0(记作 xx0)时,函数 f
10、 (x)的数值无限趋近某一确定的数值a,则 a 叫做 xx0时函数 f (x)的极限值,并记作(A17)式中的“lim ”是英语“limit(极限)”一词的缩写, (A17)式读作“当 x 趋近 x0时,f (x)的极限值等于 a”。极限是微积分中的一个最基本的概念,它涉及的问题面很广。 这里我们不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义。考虑下面这个函数:这里除 x1 外,计算任何其它地方的函数值都是没有困难的。例如当名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - -
11、 - - - 第 4 页,共 45 页 - - - - - - - - - 但是若问 x1 时函数值 f (1)?我们就会发现,这时(A18)式的说是没有意义的。所以表达式(A18)没有直接给出 f (1),但给出了x 无论如何接近 1 时的函数值来。 下表列出了当 x 的值从小于 1 和大于 1 两方面趋于 1 时 f (x)值的变化情况:表 A-1 x 与 f (x)的变化值x3x2-x-2x-10.9-0.47-0.14.70.99-0.0497-0.014.970.999-0.004997-0.0014.9970.9999-0.0004997-0.00014.99971.10.530.
12、15.31.010.5030.015.031.0010.0050030.0015.0031.00010.000500030.00015.0003从上表可以看出, x 值无论从哪边趋近1 时,分子分母的比值都趋于一个确定的数值 5,这便是 x1 时 f (x)的极限值。其实计算 f(x)值的极限无需这样麻烦,我们只要将(A18)式的分子作因式分解:3x2-x-2 (3x2)(x-1 ),并在 x1 的情况下从分子和分母中将因式(x1)消去:即可看出, x 趋于 1 时函数 f (x)的数值趋于 3125。所以根据函数极限的定义,22 几个物理学中的实例(1)瞬时速度名师资料总结 - - -精品资
13、料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 45 页 - - - - - - - - - 当一个物体作任意直线运动时, 它的位置可用它到某个坐标原点O的距离s 来描述。在运动过程中s 是随时间 t 变化的,也就是说, s 是 t 的函数:ss(t )函数 s(t )告诉我们的是这个物体什么时刻到达什么地方。形象一些说,假如物体是一列火车,则函数s(t )就是它的一张“旅行时刻表”。但是,在实际中往往不满足于一张 “时刻表”, 我们还需要知道物体运动快慢的程度,即速度或速率的概念。例如,当车辆驶过繁
14、华的街道或桥梁时,为了安全,对它的速率就要有一定的限制; 一个上抛体(如高射炮弹)能够达到怎样的高度,也与它的初始速率有关,等等。为了建立速率的概念, 我们就要研究在一段时间间隔里物体位置的改变情况。假设我们考虑的是从t t0到 t t1的一段时间间隔,则这间隔的大小为t t1-t0根据 s 和 t 的函数关系 s(t )可知,在 t0和 t1t0+t 两个时刻, s 的数值分别为 s(t0)和 s(t1)s(t0+t ),即在 t0到 t1这段时间间隔里s 改变了ss(t1)s(t0)s(t0+t )s(t0)在同样大小的时间间隔t 里,若 s 的改变量 s 小,就表明物体运动得慢,举例来说
15、,对于匀变速直线运动,根据(A4)式有名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 45 页 - - - - - - - - - 所以体在 t t0时刻的瞬时速率 v,即对于匀变速直线运动来说,这就是我们熟悉的匀变速直线运动的速率公式(A5)。(2)瞬时加速度一般地说,瞬时速度或瞬时速率v 也是 t 的函数:vv(t )但是在许多实际问题中, 只有速度和速率的概念还不够, 我们还需要知道速度随时间变化的快慢,即需要建立“加速度”的概念。名师资料总结 - - -精品资料欢
16、迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 45 页 - - - - - - - - - 类似。在直线运动中, 首先取一段时间间隔t0到 t1,根据瞬时速率 v 和时间 t 的函数关系 v(t )可知,在 t t0和 t t1两时刻的瞬时速率分别为v(t0)和 v(t1)v(t0+t ),因此在 t0到 t1这段时间间隔里 v 改变了v=v(t0+t )-v (t0)举例来说,对于匀变速直线运动,根据(A5)式有所以平均加速度为时的极限,这就是物体在t t0时刻的瞬时加速度a:(3)水渠的坡度任何排灌
17、水渠的两端都有一定的高度差,这样才能使水流动。为简单起见, 我们假设水渠是直的, 这时可以把 x 坐标轴取为逆水渠走向的方向(见图 A-5),于是各处渠底的高度h 便是 x 的函数:h=h(x)知道了这个函数,我们就可以计算任意两点之间的高度差。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 45 页 - - - - - - - - - 在修建水渠的时候,人们经常运用“坡度”的概念。譬如说,若逆水渠而上,渠底在 100m的距离内升高了20cm ,人们就说这水渠的坡度是大小
18、反映着高度随长度变化的快慢程度。如果用数学语言来表达, 我们就要取一段水渠,设它的两端的坐标分别为x0和 x1,于是这段水渠的长度为xx1-x0根据 h 和 x 的函数关系 h(x)可知,在 x0和 x1=x0+x 两地 h 的数值分别为 h(x0)和 h(x1)h(x0+x),所以在 x 这段长度内 h 改变了hh(x0+x)-h (x0)根据上述坡度的定义,这段水渠的平均坡度为在前面所举的数字例子里,x 采用了 100 米的数值。实际上在100 米的范围内,水渠的坡度可能各处不同。为了更细致地把水渠在各处的坡度反就愈能精确地反映出x=x0这一点的坡度。所以在x=x0这一点的坡度 k 应是2
19、3 函数的变化率导数前面我们举了三个例子,在前两个例子中自变量都是t ,第三个例子中自变量是 x这三个例子都表明,在我们研究变量与变量之间的函数关系时,除了它们数值上“静态的”对应关系外,我们往往还需要有“运动”或“变化”的观点,着眼于研究函数变化的趋势、增减的快慢,亦即,函数的“变化率”概念。当变量由一个数值变到另一个数值时,后者减去前者, 叫做这个变量的增量。增量,通常用代表变量的字母前面加个“”来表示。例如,当自变量x的数值由 x0变到 x1时,其增量就是xx1-x0(A25)名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - -
20、 名师精心整理 - - - - - - - 第 9 页,共 45 页 - - - - - - - - - 与此对应。因变量y 的数值将由 y0f (x0)变到 y1=f(x1),于是它的增量为yy1-y0=f(x1)f (x0)f (x0+x)f (x0)( A26)应当指出,增量是可正可负的,负增量代表变量减少。增量比可以叫做函数在xx0到 xx0+x 这一区间内的平均变化率, 它在 x0 时的极限值叫做函数yf (x)对 x 的导数或微商,记作y或 f (x),f (x)等其它形式。导数与增量不同,它代表函数在一点的性质,即在该点的变化率。应当指出,函数f (x)的导数 f (x)本身也是
21、 x 的一个函数,因此我们可以再取它对 x 的导数,这叫做函数yf (x)据此类推,我们不难定义出高阶的导数来。有了导数的概念,前面的几个实例中的物理量就可表示为:24 导数的几何意义在几何中切线的概念也是建立在极限的基础上的。如图 A-6 所示,为了确定曲线在 P0点的切线,我们先在曲线上P0附近选另一点 P1,并设想 P1点沿着曲线向 P0点靠拢。 P0P1的联线是曲线的一条割线,它的方向可用这直线与横坐名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 10 页,共 45 页 -
22、- - - - - - - - 标轴的夹角来描述。从图上不难看出,P1点愈靠近 P0点,角就愈接近一个确定的值0,当 P1点完全和 P0点重合的时候,割线P0P1变成切线 P0T,的极限值0就是切线与横轴的夹角。在解析几何中, 我们把一条直线与横坐标轴夹角的正切tan 叫做这条直线的斜率。斜率为正时表示是锐角,从左到右直线是上坡的(见图A-7a);斜率为负时表示是钝角,从左到右直线是下坡的(见图A-7b)。现在我们来研究图 A-6 中割线 P0P1和切线 P0T的斜率。设 P0和 P1的坐标分别为( x0,y0)和(x0+x,y0+y),以割线 P0P1为斜边作一直角三角形 P0P1M ,它的
23、水平边 P0M的长度为 x,竖直边 MP1的长度为y,因此这条割线的斜率为如果图 A-6 中的曲线代表函数y=f(x),则割线 P0P1的斜率就等于函数在线 P0P1斜率的极限值,即所以导数的几何意义是切线的斜率。3导数的运算名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 11 页,共 45 页 - - - - - - - - - 在上节里我们只给出了导数的定义,本节将给出以下一些公式和定理,利用它们可以把常见函数的导数求出来。31 基本函数的导数公式(1)yf (x) C (常量)
24、(2)y=f(x) x (3)yf (x)=x2(4)yf (x) x3名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 12 页,共 45 页 - - - - - - - - - 上面推导的结果可以归纳成一个普遍公式:当y=xn时,等等。利用( A33)式我们还可以计算其它幂函数的导数(见表A-2)。除了幂函数 xn外,物理学中常见的基本函数还有三角函数、对数函数和指数函数。我们只给出这些函数的导数公式(见表A-2)而不推导,读者可以直接引用。32 有关导数运算的几个定理定理一证:名
25、师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 13 页,共 45 页 - - - - - - - - - 定理二证:表 A-2 基本导数公式函数 y=f(x)导数 y=f(x)c( 任意常量 )0 xn(n 为任意常量 )nxn-1n=1,x1n=2,x22xn=3,x33x2sinx cosx cosx -sinx lnx 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高中物理竞赛的数学基础 2022 年高 物理 竞赛 数学 基础
限制150内