《2022年高中数学必修知识点总结 3.pdf》由会员分享,可在线阅读,更多相关《2022年高中数学必修知识点总结 3.pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、- 1 - 高中数学必修 4 知识点总结第一章:三角函数1.1.1、任意角1、 正角、负角、零角、象限角的概念 . 2、 与角终边相同的角的集合:Zkk ,2. 1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1 弧度的角 . 2、rl. 3、弧长公式 :RRnl180. 4、扇形面积公式 :lRRnS213602. 1.2.1、任意角的三角函数1、 设是一个任意角,它的终边与单位圆交于点yxP,,那么:xyxytan,cos,sin2、 设点,A xy为角终边上任意一点,那么:(设22rxy)sinyr,cosxr,tanyx,cotxy3、sin,cos,tan在四个象限的符号
2、和三角函数线的画法. 正弦线: MP; 余弦线: OM; 正切线: AT4、 特殊角 0, 30, 45, 60,90,180, 270 等的三角函数值 . 0 64322334322sincostan1.2.2、同角三角函数的基本关系式1、 平方关系 :1cossin22. 2、 商数关系 :cossintan. 3、 倒数关系:tancot11.3 、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”Zk)TMAOPxy名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共
3、 9 页 - - - - - - - - - - 2 - 1、 诱导公式一 :.tan2tan,cos2cos,sin2sinkkk(其中:Zk)2、 诱导公式二 :.tantan,coscos,sinsin3、诱导公式三 :.tantan,coscos,sinsin4、诱导公式四 :.tantan,coscos,sinsin5、诱导公式五 :.sin2cos,cos2sin6、诱导公式六 :.sin2cos,cos2sin1.4.1 、正弦、余弦函数的图象和性质1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性
4、、周期性. 3、会用 五点法作图 . sinyx在0, 2 x上的五个关键点为:30 010-12022( , )( , , )( , , ) ( ,) ( , ) .1.4.3 、正切函数的图象与性质1、记住正切函数的图象:1-1y=cosx-32-52-727252322-2-4-3-2432-oyx1-1y=sinx-32-52-727252322-2-4-3-2432-oyx名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 9 页 - - - - - - - - -
5、 - 2 - y=tanx322-32-2oyx2、记住余切函数的图象:y=cotx3222-2oyx3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性. 周期函数定义 :对于函数xf,如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有xfTxf,那么函数xf就叫做周期函数,非零常数T 叫做这个函数的周期 . 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 9 页 - - - - - - - - - 2 图表归纳:正弦、余弦、
6、正切函数的图像及其性质xysinxycosxytan图象定义域RR,2|Zkkxx值域-1,1 -1,1 R最值maxmin2,122,12xkkZyxkkZy时,时,maxmin2,12,1xkkZyxkkZy时,时,无周期性2T2TT奇偶性奇偶奇单调性Zk在2,222kk上单调递增在32,222kk上单调递减在2,2kk上单调递增在2,2kk上单调递减在(,)22kk上 单 调 递增对称性Zk对称轴方程:2xk对称中心 (,0)k对称轴方程:xk对称中心(, 0)2k无对称轴对称中心,0)(2k1.5 、函数xAysin的图象1、对于函数:sin0,0yAxB A有:振幅 A,周期2T,初
7、相,相位x,频率21Tf. 2、能够讲出函数xysin的图象与sinyAxB的图象之间的平移伸缩变换关系. 先平移后伸缩:sinyx平移|个单位si nyx(左加右减)横坐标不变si nyAx纵坐标变为原来的A 倍名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 9 页 - - - - - - - - - 3 纵坐标不变sinyAx横坐标变为原来的1|倍平移|B个单位sinyAxB(上加下减)先伸缩后平移:sinyx横坐标不变sinyAx纵坐标变为原来的A 倍纵坐标不变si
8、nyAx横坐标变为原来的1|倍平移个单位si nyAx(左加右减)平移|B个单位sinyAxB(上加下减)3、三角函数的周期,对称轴和对称中心函数sin()yx,xR及函数cos()yx,xR(A,为常数,且A0) 的周期2|T;函数tan()yx,,2xkkZ(A, ,为常数,且A 0)的周期|T. 对于sin()yAx和cos()yAx来说, 对称中心与零点相联系,对称轴与最值点联系.求函数sin()yAx图像的对称轴与对称中心,只需令()2xkkZ与()xkkZ解出x即可 . 余弦函数可与正弦函数类比可得. 4、由图像确定三角函数的解析式利用图像特征:maxmin2yyA,maxmin2
9、yyB. 要根据周期来求,要用图像的关键点来求. 1.6 、三角函数模型的简单应用1、 要求熟悉课本例题. 第三章、三角恒等变换3.1.1 、两角差的余弦公式记住 15的三角函数值:sincostan12426426323.1.2 、两角和与差的正弦、余弦、正切公式名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 9 页 - - - - - - - - - 4 1、sincoscossinsin2、sincoscossinsin3、sinsincoscoscos4、sins
10、incoscoscos5、tantan1 tantantan. 6、tantan1 tantantan. 3.1.3 、二倍角的正弦、余弦、正切公式1、cossin22sin,变形 :12sincossin2. 2、22sincos2cos1cos222sin21. 变形如下:升幂公式:221cos22cos1cos22sin降幂公式:221cos(1cos2 )21sin(1 cos2 )23、2tan1tan22tan. 4、sin 21cos2tan1cos2sin 23.2 、简单的三角恒等变换1、 注意 正切化弦、平方降次. 2、辅助角公式)sin(cossin22xbaxbxay(
11、其中辅助角所在象限由点( , )a b的象限决定 ,tanba ). 第二章:平面向量 2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度. 2、 既有大小又有方向的量叫做向量 . 2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段 ,有向线段包含三个要素:起点、方向、长度. 2、 向量AB的大小,也就是向量AB的长度(或称 模) ,记作AB;长度为零的向量叫做零向量 ;长度名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 9 页 - -
12、 - - - - - - - 5 等于 1个单位的向量叫做单位向量 . 3、 方向相同或相反的非零向量叫做平行向量(或共线向量). 规定:零向量与任意向量平行. 2.1.3 、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量 . 2.2.1 、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则. 2、baba. 2.2.2 、向量减法运算及其几何意义1、 与a长度相等方向相反的向量叫做a的相反向量 . 2、 三角形减法法则和平行四边形减法法则. 2.2.3 、向量数乘运算及其几何意义1、 规定:实数与向量a的积是一个向量,这种运算叫做向量的数乘 . 记作:a,它的长度
13、和方向规定如下:aa, 当0时 , a的方向与a的方向相同;当0时, a的方向与a的方向相反 . 2、 平面向量共线定理:向量0aa与b共线,当且仅当有唯一一个实数,使ab. 2.3.1 、平面向量基本定理1、 平面向量基本定理:如果21,ee是同一平面内的两个不共线向量,那么对于这一平面内任一向量a,有且只有一对实数21,,使2211eea. 2.3.2 、平面向量的正交分解及坐标表示1、yxjyi xa,. 2.3.3 、平面向量的坐标运算1、 设2211,yxbyxa,则:名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名
14、师精心整理 - - - - - - - 第 7 页,共 9 页 - - - - - - - - - 6 2121,yyxxba,2121,yyxxba,11, yxa,1221/yxyxba. 2、 设2211,yxByxA,则:1212,yyxxAB. 2.3.4 、平面向量共线的坐标表示1、设332211,yxCyxByxA,则线段 AB中点坐标为222121,yyxx, ABC的重心坐标为33321321,yyyxxx. 2.4.1 、平面向量数量积的物理背景及其含义1、cosbaba. 2、a在b方向上的投影为:cosa. 3、22aa. 4、2aa. 5、0baba. 2.4.2、平
15、面向量数量积的 坐标表示、模、夹角1、 设2211,yxbyxa,则:2121yyxxba2121yxa121200aba bx xy y1221/ /0ababx yx y2、 设2211,yxByxA,则:212212yyxxAB. 3、 两向量的夹角公式名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 9 页 - - - - - - - - - 7 121222221122c o sx xy ya ba bxyxy4、点的平移公式平移前的点为( ,)P x y(原坐标),平移后的对应点为(,)Px y(新坐标),平移向量为( , )PPh k,则.xxhyyk函数( )yf x的图像按向量( , )ah k平移后的图像的解析式为().ykf xh名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 9 页 - - - - - - - - -
限制150内