圆锥曲线复习PPT课件.ppt
《圆锥曲线复习PPT课件.ppt》由会员分享,可在线阅读,更多相关《圆锥曲线复习PPT课件.ppt(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、圆圆 锥锥 曲曲 线线几何性质几何性质第二定义第二定义几何性质几何性质第二定义第二定义几何性质几何性质标准方程标准方程标准方程标准方程标准方程标准方程双曲线定义双曲线定义抛物线定义抛物线定义椭圆的定义椭圆的定义统一定义统一定义综合应用综合应用 椭椭 圆圆 双曲线双曲线抛物线抛物线平面内与两个定点平面内与两个定点F1,F2的距离和等于常数的距离和等于常数(大于(大于 )的点的轨迹叫做椭圆。)的点的轨迹叫做椭圆。F1,F2叫做椭圆的焦点,叫做椭圆的焦点, 叫做椭圆的焦叫做椭圆的焦距。距。注意:注意: 21FF21FF椭圆的定义椭圆的定义2、常数必须大于、常数必须大于 ,限制条件,限制条件21FF1
2、、“平面内平面内”是大前提,不可缺是大前提,不可缺省省椭圆椭圆焦点在焦点在x轴上轴上焦点在焦点在y轴上轴上几何条件几何条件标准方程标准方程图形图形顶点坐标顶点坐标 对称性对称性 焦点坐标焦点坐标离心率离心率 准线方程准线方程12122 (2)MFMFaaF F22,0 ,ccabcae01e 0, 0ab2axc 22221(0)yxabab2ayc220,ccab , 0 , 0,ab22221(0)yxababx轴,长轴长轴,长轴长2ay轴,短轴长轴,短轴长2by轴,长轴长轴,长轴长2ax轴,短轴长轴,短轴长2bxyoabxyoab8642-2-10-55yP = 1.20 xP = 1.
3、96P: (1.96, 1.20)b = 1.20 厘米a = 1.96 厘米b = 1.48 厘米a = 3.36 厘米 = 54.42PDabM椭圆的参数方程椭圆的参数方程)0(sincosbabyax222222cossin1yxabcossinxyab变形变形平方和平方和几个重要结论:几个重要结论:设设P是椭圆是椭圆 上的点,上的点,F1,F2是椭圆是椭圆的焦点,的焦点,F1PF2=,则则1、当当P为短轴端点时,为短轴端点时,SPF1F2有最大值有最大值=bc2、当当P为短轴端点时,为短轴端点时,F1PF2为最大为最大3、椭圆上的点椭圆上的点A1距距F1最近,最近,A2距距F1最远最远
4、4、过焦点的弦中,以垂直于长轴的弦为最短过焦点的弦中,以垂直于长轴的弦为最短 012222babyaxPB2B1F2A2A1F1x双曲线的定义双曲线的定义 平面内平面内与两个定点与两个定点F1F2的距离的差的绝对的距离的差的绝对值等于常数值等于常数(小于小于|F1F2|)的点的轨迹叫做双的点的轨迹叫做双曲线曲线.这两个定点叫做双曲线的焦点这两个定点叫做双曲线的焦点,两焦点两焦点的距离叫双曲线的焦距的距离叫双曲线的焦距. 注意注意: “平面内平面内”三字不可省三字不可省,这是大前提这是大前提 距离差要取绝对值距离差要取绝对值,否则只是双曲线的一否则只是双曲线的一支支 常数必须小于常数必须小于|F
5、1F2|双曲线双曲线焦点在焦点在x轴轴焦点在焦点在y轴轴几何条件几何条件标准方程标准方程图形图形顶点坐标顶点坐标对称轴对称轴范围范围12222byax-5510642-2-4-6yx012222bxay-10-5510158642-2-4-6-8yx0(a, 0) (0, a) x轴,实轴长轴,实轴长2ay轴,虚轴长轴,虚轴长2by轴,实轴长轴,实轴长2ax轴,虚轴长轴,虚轴长2b|x|a,yRxR,|y|a12122 (02)MFMFaaF F 焦点在焦点在X轴轴 焦点在焦点在Y轴轴焦点坐标焦点坐标a,b,c关系关系离心率离心率 准线准线渐近线渐近线222cba) 1( eacecax2ca
6、y2xabyxbay(c, 0)(0, c)12222byax12222bxayu等轴双曲线:等轴双曲线: 实轴和虚轴等长的双曲线叫做等轴双曲线。实轴和虚轴等长的双曲线叫做等轴双曲线。 特点:特点: a=b,e= 渐近线渐近线: y=xu共轭双曲线:共轭双曲线: 双曲线双曲线 与双曲线与双曲线 互为共轭双互为共轭双曲线曲线. 特点特点: 一个双曲线的实轴一个双曲线的实轴,虚轴分别虚轴分别 是另一个双曲线的虚轴和实轴是另一个双曲线的虚轴和实轴. 焦距长相等焦距长相等 有共同的渐近线有共同的渐近线 22221yxab22221yxba2642-2-4-5510oabbyxa 抛物线的定义 平面内与
7、一个定点平面内与一个定点F和一条定直线和一条定直线l的距离的距离相等的点的轨迹叫做抛物线。相等的点的轨迹叫做抛物线。 定点定点F叫做抛物线的焦点。定直线叫做抛物线的焦点。定直线l 叫做抛叫做抛物线的准线。物线的准线。 注意:注意:“平面内平面内”是大前提,不可缺省是大前提,不可缺省图形图形焦点焦点 准线准线 标准方程标准方程通径端通径端点点范围范围yxoyxoyxoyxo)0,2(p)0 ,2(p)2,0(p)2,0(p2px 2px2py 2pypxy22pxy22pyx22pyx22),2(pp),2(pp)2,(pp )2,(ppX 0yRX 0yRxRy0 x Ry0642-2-4-6
8、-55x=-p/2op/2A(x1,y1)B(x2,y2)设直线设直线l过焦点过焦点F与抛物线与抛物线y2=2px(p0)相相交于交于A(x1,y1),B(x2,y2)两点两点,则则: 通径长为通径长为 焦点弦长焦点弦长 抛物线焦点弦的几条性质抛物线焦点弦的几条性质21xx21yypxxAB2142p2pp214圆锥曲线的统一定义圆锥曲线的统一定义平面内到一定平面内到一定点点F和一条定和一条定直线直线l l 的距离的距离之比等于常数之比等于常数e(点(点F在直线在直线 l l 外外, e 0)0e1e=1椭圆椭圆双曲线双曲线定点定点F为焦点,定直线为焦点,定直线l l为为准线准线,e为离心率。
9、为离心率。抛物线抛物线圆锥曲线的焦半径公式圆锥曲线的焦半径公式在圆锥在圆锥曲线上,曲线上,F1,F2是圆锥是圆锥曲线的曲线的左右焦左右焦点点2222(0)xyabab22221xyab椭圆椭圆22 (0)ypxp双曲线双曲线抛物线抛物线MF20px ),(00yxM01exaMF02exaMF01exaMF02exaMF直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系相切相切相交相交相离相离双曲线双曲线抛物线抛物线交于一点(直线与交于一点(直线与渐近线平行)渐近线平行)交于两交于两点点0 0 交于两点交于两点交于一点交于一点(直线平行直线平行于抛物线的对称轴于抛物线的对称轴)椭圆椭圆两个交点两
10、个交点0 无公共点无公共点0 只有一个交点且只有一个交点且0弦长公式)+(2=21xxeaAB212-1xxkAB),(),A(2211yxByxbkxy+=),(yxf当直线当直线与圆锥曲线与圆锥曲线相交于两点时时)+(+2=21xxeaAB过左过左焦点焦点过右过右焦点焦点)+(2=21xxeaAB过左过左焦点焦点过右过右焦点焦点)+(+2=21xxeaABpxxAB+=21特特别别当当直直线线过过焦焦点点时,时,焦焦点点弦弦长长为:为:、椭椭圆圆2、双双曲曲线线3、抛抛物物线线统一性统一性(1)从方程形式看从方程形式看:)0( 12222babyax)0, 0( 12222babyax)0
11、(22ppxy都属于都属于二次曲线(2)从点的集合(或轨迹)的观点看:从点的集合(或轨迹)的观点看:它们都是与定点和定直线距离的比是常数它们都是与定点和定直线距离的比是常数e的点的集合(或轨迹)的点的集合(或轨迹)(3)这三种曲线都是可以由平面截圆锥面得到的截线这三种曲线都是可以由平面截圆锥面得到的截线4、概念补遗:、概念补遗:共轭双曲线共轭双曲线 、等轴双曲线、焦半径公式、椭圆的、等轴双曲线、焦半径公式、椭圆的参数方程、焦点弦、有共同渐近线的双曲线系方程参数方程、焦点弦、有共同渐近线的双曲线系方程基础题例题基础题例题1.已知点已知点A(-2,0)、B(3,0),动点,动点P(x,y)满足满足
12、PAPB=x2,则点则点P的轨迹是的轨迹是 ( ) A.圆圆 B.椭圆椭圆 C.双曲线双曲线 D.抛物线抛物线D)(,5| 143|)3() 1(),(. 222的轨迹是的轨迹是则点则点满足满足动点动点MyxyxyxM A.圆圆 B.椭圆椭圆 C.双曲线双曲线 D.抛物线抛物线D),3(),2(),(yxPByxPAyxP设设2),3(),2(xyxyx22)3()2(xyxx62xyldMAyxlAyxM| , 0143:),3, 1 (),(设设3.ABC的顶点为的顶点为A(0,-2),C(0,2),三边长,三边长a、b、c成等成等差数列,公差差数列,公差d0;则动点;则动点B的轨迹方程为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 复习 PPT 课件
限制150内