高一数学教学计划集锦5篇.docx
《高一数学教学计划集锦5篇.docx》由会员分享,可在线阅读,更多相关《高一数学教学计划集锦5篇.docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一数学教学计划集锦5篇高一数学教学计划集锦5篇 时间的脚步是无声的,它在不经意间流逝,我们的教学工作又将在忙碌中充实着,在喜悦中收获着,现在的你想必不是在做教学计划,就是在准备做教学计划吧。为了让您不再有写不出教学计划的苦闷,下面是小编收集整理的高一数学教学计划5篇,供大家参考借鉴,希望可以帮助到有需要的朋友。 高一数学教学计划篇1 教学目标 1通过对幂函数概念的学习以及对幂函数图象和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。 2使学生理解并掌握幂函数的图象与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。 3培养学生观察、分析、归纳能力。了解类
2、比法在研究问题中的作用。 教学重点、难点 重点:幂函数的性质及运用 难点:幂函数图象和性质的发现过程 教学方法:问题探究法教具:多媒体 教学过程 一、创设情景,引入新课 问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系? (总结:根据函数的定义可知,这里p是w的函数) 问题2:如果正方形的边长为a,那么正方形的面积,这里S是a的函数。问题3:如果正方体的边长为a,那么正方体的体积,这里V是a的函数。问题4:如果正方形场地面积为S,那么正方形的边长,这里a是S的函数问题5:如果某人s内骑车行进了km,那么他骑车的速度,这里v是t的函数。
3、 以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题) 二、新课讲解 由学生讨论,(教师可提示p=w可看成p=w1)总结,即可得出:p=w,s=a2,a=s,v=t-1都是自变量的若干次幂的形式。 教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数。 幂函数的定义:一般地,我们把形如的函数称为幂函数(powerfu
4、nction),其中是自变量,是常数。1幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念)结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别:对幂函数来说,底数是自变量,指数是常数对指数函数来说,指数是自变量,底数是常数例1判别下列函数中有几个幂函数? y=y=2x2y=xy=x2+xy=-x3(由学生独立思考、回答) 2幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容? (学生讨论,教师引导。学生回答。) 3幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域? (学生小组讨论,得到结论。引导
5、学生举例研究。结论:幂指数不同,定义域并不完全相同,应区别对待。)教师指出:幂函数y=xn中,当n=0时,其表达式y=x0=1;定义域为(-,0)U(0,+),特别强调,当x为任何非零实数时,函数的值均为1,图象是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外。) 例2写出下列函数的定义域,并指出它们的奇偶性:y=xy=y=xy=x (学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。) 4上述函数y=xy=y=xy=x的单调性如何?如何判断?
6、(学生思考,引导作图可得。并加上y=x和y=x-1图象)接下来,在同一坐标系中学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示。见后附图1 让学生观察图象,看单调性、以及还有哪些共同点?(学生思考,回答。教师注意学生叙述的严密性。) 教师总评:幂函数的性质 (1)所有的幂函数在(0,+)上都有定义,并且图象都过点(1,1), (2)如果a0,则幂函数的图象通过原点,并在区间0,+)上是增函数, (3)如果a16() (4)若3x12则x4() (1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。通过复习既找准
7、了旧知停靠点,又创设了一种情境,给学生提供了类比、想象的空间,为后续学习做好了铺垫。 教师导语:当我们开始研究不等式的时候,自然会联想到它是否与等式有相类似的性质。这节课我们就通过类比来探究不等式的基本性质。 温故知新 问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗? 等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。 估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“,b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答。 对学生进行推理
8、训练,让学生明白,叙述要有根据,进一步提高学生的逻辑思维能力和语言表达能力。 2、你认为在运用不等式的基本性质时哪一条性质最容易出错,应该怎样记住? 及时进行学习反思,总结经验,通过相互评价学习效果,及时发现问题、解决知识盲点,培养学生的创新精神和实践能力。 3.小明的困惑: 小明用不等式的基本性质将不等式mn进行变形,两边都乘以4,4m4n,两边都减去4m,04n-4m,即04(n-m),两边都除以(n-m),得04,0怎么会大于4呢? 小明可糊涂了聪明的同学,你能告诉小军他究竟错在什么地方吗?同桌讨论。 通过替人排忧解难,强化对不等式三个基本性质的理解与运用,突出重点,突破难点。 4.火眼
9、金睛 a2,则3a_2a 2a3a,则a_0 通过变式训练,加深学生对新知的理解,培养学生分析、探究问题的能力。 课堂小结: 这节课你有哪些收获?有何体会?你认为自己的表现如何?教师引导学生回顾、思考、交流。 回顾、总结、提高。学生自觉形成本节的课的知识网络。 思考题:你来决策 咱们班的王帅同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮王帅同学考虑一下选择哪家旅行社更合算吗? 利用所学的数学知识,解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。既培养了学生用
10、数学知识解决实际问题的能力,又树立了学好数学的信心。 高一数学教学计划篇4 一设计思想: 函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。 二教学内容分析: 本节课是普通高中课程标准的新增内容之一,选自普通高中课程标准实验教课书数学I必修
11、本(A版)第94-95页的第三章第一课时3.1.1方程的根与函数的的零点。 本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗透“方程与函数”思想。 总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 教学计划 集锦
限制150内