中南大学线性代数PPT课件1-习题课.ppt
《中南大学线性代数PPT课件1-习题课.ppt》由会员分享,可在线阅读,更多相关《中南大学线性代数PPT课件1-习题课.ppt(75页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、把把 个不同的元素排成一列,叫做这个不同的元素排成一列,叫做这 个元个元素的素的全排列全排列(或(或排列排列)nn个不同的元素的所有排列的种数用个不同的元素的所有排列的种数用 表示,表示,且且 nnP!nPn 逆序数为奇数的排列称为逆序数为奇数的排列称为奇排列奇排列,逆序数为,逆序数为偶数的排列称为偶数的排列称为偶排列偶排列在一个排列在一个排列 中,若数中,若数 ,则称这两个数组成一个则称这两个数组成一个逆序逆序 nstiiiii21stii 一个排列中所有逆序的总数称为此排列的一个排列中所有逆序的总数称为此排列的逆逆序数序数分别计算出排列中每个元素前面比它大的数分别计算出排列中每个元素前面比
2、它大的数码个数之和,即算出排列中每个元素的逆序数,码个数之和,即算出排列中每个元素的逆序数,每个元素的逆序数之总和即为所求排列的逆序数每个元素的逆序数之总和即为所求排列的逆序数方法方法2 2方法方法1 1分别计算出排在分别计算出排在 前面比它大的前面比它大的数码之和,即分别算出数码之和,即分别算出 这这 个元素个元素的逆序数,这的逆序数,这 个元素的逆序数之总和即为所求个元素的逆序数之总和即为所求排列的逆序数排列的逆序数n,n,121 n,n,121 nn定义定义在排列中,将任意两个元素对调,其余元在排列中,将任意两个元素对调,其余元素不动,称为一次对换将相邻两个元素对调,素不动,称为一次对换
3、将相邻两个元素对调,叫做相邻对换叫做相邻对换定理定理一个排列中的任意两个元素对换,排列改一个排列中的任意两个元素对换,排列改变奇偶性变奇偶性推论推论奇排列调成标准排列的对换次数为奇数,奇排列调成标准排列的对换次数为奇数,偶排列调成标准排列的对换次数为偶数偶排列调成标准排列的对换次数为偶数 npppppptnnnnnnnnaaaaaaaaaaaaD2121222211121121211 ., 2 , 1;, 2 , 12121列取和列取和的所有排的所有排表示对表示对个排列的逆序数个排列的逆序数为这为这的一个排列的一个排列为自然数为自然数其中其中ntnppppppnn .,)1(21212121的
4、逆序数的逆序数为行标排列为行标排列其中其中亦可定义为亦可定义为阶行列式阶行列式ppptaaaDDnnnpppppptnn . ,)()4.,)()3.),()2.DD,1)T乘此行列式乘此行列式等于用数等于用数一数一数中所有的元素都乘以同中所有的元素都乘以同列列行列式的某一行行列式的某一行等于零等于零则此行列式则此行列式完全相同完全相同列列如果行列式有两行如果行列式有两行行列式变号行列式变号列列互换行列式的两行互换行列式的两行即即式相等式相等行列式与它的转置行列行列式与它的转置行列kk ., )( , )( )8., )( )7., )( )6. )( )5行列式的值不变行列式的值不变对应的元
5、素上去对应的元素上去行行后加到另一列后加到另一列然然的各元素乘以同一数的各元素乘以同一数行行把行列式的某一列把行列式的某一列式之和式之和此行列式等于两个行列此行列式等于两个行列则则的元素都是两数之和的元素都是两数之和行行若行列式的某一列若行列式的某一列式为零式为零则此行列则此行列元素成比例元素成比例列列行列式中如果有两行行列式中如果有两行提到行列式符号的外面提到行列式符号的外面以以的所有元素的公因子可的所有元素的公因子可列列行列式中某一行行列式中某一行)余子式与代数余子式)余子式与代数余子式.,)1(1 的代数余子式的代数余子式叫做元素叫做元素;记;记的余子式,记作的余子式,记作阶行列式叫做元
6、素阶行列式叫做元素列划去后,留下来的列划去后,留下来的行和第行和第所在的第所在的第阶行列式中,把元素阶行列式中,把元素在在aAMAManjianijijijjiijijijij )关于代数余子式的重要性质)关于代数余子式的重要性质 ., 0;, 1., 0;,., 0;,11jijijijiDDAajijiDDAaijijjknkikijkinkki当当当当其中其中当当当当或或当当当当 ., , 2 , 1., 2 , 1, 0 .,122112222212111212111所得到的行列式所得到的行列式,换成常数项换成常数项列列中第中第)是把系数行列式)是把系数行列式(其中其中那么它有唯一解那
7、么它有唯一解的系数行列式的系数行列式如果线性方程组如果线性方程组bbbjDnjDnjDDxDbxaxaxabxaxaxabxaxaxanjjjnnnnnnnnnn 克拉默法则的理论价值克拉默法则的理论价值., 0., 22112222212111212111唯一唯一那么它一定有解,且解那么它一定有解,且解的系数行列式的系数行列式如果线性方程组如果线性方程组 Dbxaxaxabxaxaxabxaxaxannnnnnnnnn. 必为零必为零解,则它的系数行列式解,则它的系数行列式解或有两个不同的解或有两个不同的如果上述线性方程组无如果上述线性方程组无定理定理定理定理., 0. 0, 0, 0 22
8、1122221211212111那么它没有非零解那么它没有非零解的系数行列式的系数行列式如果齐次线性方程组如果齐次线性方程组 Dxaxaxaxaxaxaxaxaxannnnnnnnn. 它的系数行列式必为零它的系数行列式必为零组有非零解,则组有非零解,则如果上述齐次线性方程如果上述齐次线性方程定理定理定理定理一、计算排列的逆序数一、计算排列的逆序数二、计算(证明)行列式二、计算(证明)行列式三、克拉默法则三、克拉默法则分别算出排列中每个元素前面比它大的数码之分别算出排列中每个元素前面比它大的数码之和,即算出排列中每个元素的逆序数和,即算出排列中每个元素的逆序数 ., 13232221212 并
9、并讨讨论论奇奇偶偶性性的的逆逆序序数数求求排排列列kkkkkk 解解例例; 0,2故逆序数为故逆序数为排在首位排在首位k; 1),2(11故逆序数为故逆序数为大的数有一个大的数有一个的前面比的前面比k; 1),2()12()12( 逆序数为逆序数为故故大的数有一个大的数有一个的前面比的前面比kkk ; 2),12 ,2(22 数为数为故逆序故逆序大的数有两个大的数有两个的前面比的前面比 kk; 2),12 ,2(2222 故逆序数为故逆序数为大的数有两个大的数有两个的前面比的前面比 kkkk ; 1),2, 12 ,2(111 kkkkkkk故逆序数为故逆序数为个个大的数有大的数有的前面比的前
10、面比; 1),2, 12 ,2(111 kkkkkkk故逆序数为故逆序数为个个大的数有大的数有的前面比的前面比;),1, 12 ,2( kkkkkkk故逆序数为故逆序数为个个大的数有大的数有的前面比的前面比 kkkt 1122110 kkk 211122k 当当 为偶数时,排列为偶排列,为偶数时,排列为偶排列,k当当 为奇数时,排列为奇排列为奇数时,排列为奇排列k于是排列的逆序数为于是排列的逆序数为用定义计算(证明)用定义计算(证明)例例用行列式定义计算用行列式定义计算000000000535243423534333231252423222113125aaaaaaaaaaaaaaaaD 的非零
11、元素分别得到的非零元素分别得到行可能行可能中第中第那么,由那么,由行的元素分别为行的元素分别为中第中第设设5 , 4 , 3 , 2 , 1,5 , 4 , 3 , 2 , 1554321554321DaaaaaDppppp解解. 3 , 2; 3 , 2; 5 , 4 , 3 , 2 , 1; 5 , 4 , 3 , 2 , 1; 3 , 254321 ppppp. 05,554321 Dppppp故故元排列也不能组成,元排列也不能组成,一个一个在上述可能取的代码中在上述可能取的代码中因为因为评注评注本例是从一般项入手,将行标按标准本例是从一般项入手,将行标按标准顺序排列,讨论列标的所有可能
12、取到的值,并注顺序排列,讨论列标的所有可能取到的值,并注意每一项的符号,这是用定义计算行列式的一般意每一项的符号,这是用定义计算行列式的一般方法方法. 2于零于零还多,则此行列式必等还多,则此行列式必等素比素比阶行列式中等于零的元阶行列式中等于零的元如果一个如果一个nnn 注意注意例例设设,2122221112111aaaaaaaaaDnnnnnn ,221122222111112112abababaabababaaDnnnnnnnnnn .2DD 证明:证明:证明证明由行列式的定义有由行列式的定义有.,)1( 2121121的逆序数的逆序数是排列是排列其中其中ppptaaaDnpnpptn
13、.,)1( )()()1( 21)()21(212211221212211的逆序数的逆序数是排列是排列其中其中ppptbaaabababaDnpppnpnpptpnpnpppptnnnn ,212npppn 而而.)1(121221DaaaDpppnnt 所以所以评注评注本题证明两个行列式相等,即证明两本题证明两个行列式相等,即证明两点,一是两个行列式有完全相同的项,二是每一点,一是两个行列式有完全相同的项,二是每一项所带的符号相同这也是用定义证明两个行列项所带的符号相同这也是用定义证明两个行列式相等的常用方法式相等的常用方法利用范德蒙行列式计算利用范德蒙行列式计算例例计算计算利用范德蒙行列式
14、计算行列式,应根据范德利用范德蒙行列式计算行列式,应根据范德蒙行列式的特点,将所给行列式化为范德蒙行列蒙行列式的特点,将所给行列式化为范德蒙行列式,然后根据范德蒙行列式计算出结果。式,然后根据范德蒙行列式计算出结果。.333222111222nnnDnnnn ,于是得到,于是得到增至增至幂次数便从幂次数便从则方则方若提取各行的公因子,若提取各行的公因子,递升至递升至而是由而是由变到变到序排列,但不是从序排列,但不是从次数自左至右按递升次次数自左至右按递升次方幂方幂数的不同方幂数的不同方幂中各行元素分别是一个中各行元素分别是一个10.1, 10, nnnDn解解.1333122211111!12
15、1212nnnnDnnnn 上面等式右端行列式为上面等式右端行列式为n阶范德蒙行列式,由阶范德蒙行列式,由范德蒙行列式知范德蒙行列式知!.1 !2)!2()!1( !)1()2()24)(23()1()13)(12( !)(!1 nnnnnnnnxxnDjinjin评注评注本题所给行列式各行(列)都是某元本题所给行列式各行(列)都是某元素的不同方幂,而其方幂次数或其排列与范德蒙素的不同方幂,而其方幂次数或其排列与范德蒙行列式不完全相同,需要利用行列式的性质(如行列式不完全相同,需要利用行列式的性质(如提取公因子、调换各行(列)的次序等)将此行提取公因子、调换各行(列)的次序等)将此行列式化成范
16、德蒙行列式列式化成范德蒙行列式用化三角形行列式计算用化三角形行列式计算例例计算计算.43213213213211xaaaaaaxaaaaaxaaaaaxDnnnn 解解列都加到第一列,得列都加到第一列,得将第将第1, 3 , 2 nxaaaxaxaaxaaxaxaaaaxDniinniinniinniin32121212111 提取第一列的公因子,得提取第一列的公因子,得.1111)(32222111xaaaxaaaxaaaaxDnnnniin 后后一一列列,得得倍倍加加到到最最列列的的将将第第列列,倍倍加加到到第第列列的的列列,将将第第倍倍加加到到第第列列的的将将第第)(1,3)(12)(1
17、1aaan . )()(11 niiniiaxaxaxaaaaaxaaaxaxDnniin 23122121111010010001)(评注评注本题利用行列式的性质,采用本题利用行列式的性质,采用“化零化零”的方法,逐步将所给行列式化为三角形行列式的方法,逐步将所给行列式化为三角形行列式化零时一般尽量选含有的行(列)及含零较多化零时一般尽量选含有的行(列)及含零较多的行(列);若没有,则可适当选取便于化零的行(列);若没有,则可适当选取便于化零的数,或利用行列式性质将某行(列)中的某数的数,或利用行列式性质将某行(列)中的某数化为化为1 1;若所给行列式中元素间具有某些特点,则;若所给行列式中
18、元素间具有某些特点,则应充分利用这些特点,应用行列式性质,以达到应充分利用这些特点,应用行列式性质,以达到化为三角形行列式之目的化为三角形行列式之目的,得,得提取公因子提取公因子行中行中行,并从第行,并从第行都加到第行都加到第、的第的第将将dcbaD 114324用降阶法计算用降阶法计算例例计算计算.4abcdbadccdabdcbaD 解解,1111)(4abcdbadccdabdcbaD 列,得列,得列都减去第列都减去第、再将第再将第1432,0001)(4dadbdcdcbcacdcbcbdbabdcbaD 行展开,得行展开,得按第按第1.)(4dadbdccbcacdbcbdbadcb
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中南 大学 线性代数 PPT 课件 习题
限制150内