二项式系数的性质及应用ppt课件.pptx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《二项式系数的性质及应用ppt课件.pptx》由会员分享,可在线阅读,更多相关《二项式系数的性质及应用ppt课件.pptx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.3.2 1.3.2 二项式系数的性质二项式系数的性质及应用及应用二项式定理(a+b)n=Cn0an+Cn1an-1b1+Cnkan-kbk+Cnnbn展形式的第k+1项为Tk+1=Cnkan-kbk1 展开式中的二项式系数,如下表所示:展开式中的二项式系数,如下表所示: nba)( 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1)(ba2)(ba3)(ba4)(ba5)(ba6)(ba()nab 0111C C012222C C C01233333C C C C0123444444C C C C C012345555
2、555C C C C C C01234566666666C C C C C C C0121.rnnnnnnnnC C CCCC1101CC02C12C22C03C13C23C33C14C04C34C24C44C05C15C25C35C45C55C66C36C46C56C26C16C06C第第1行行第第2行行第第6行行-第第5行行-第第4行行第第3行行-111211331146411510 10511615 20 1561对称对称 与首末两端“等距离”的两个二项式系数相等mnnmnCC 九章算术九章算术杨辉杨辉详解九章算法中记载的表杨辉三角杨辉三角 类似上面的表,早在我国南宋数学家杨辉1261年
3、所著的详解九章算法一书里就已经出现了,这个表称为杨辉三角.在书中,还说明了表里“一”以外的每一个数都等于它肩上两个数的和,杨辉指出这个方法出于释锁算书,且我国北宋数学家贾宪(约公元11世纪)已经用过它.这表明我国发现这个表不晚于11世纪.在欧洲,这个表被认为是法国数学家帕斯卡(1623-1662)首先发现的,他们把这个表叫做帕斯卡三角.这就是说,杨辉三角的发现要比欧洲早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的. 因此因此, ,当当n为偶数时为偶数时, ,中间一项的二项式中间一项的二项式2Cnn系数系数 取得最大值;取得最大值; 当当n为奇数时为奇数时, ,中间两项的二项式
4、系数中间两项的二项式系数 12Cnn12Cnn相等,且同时取得最大值。相等,且同时取得最大值。最大值最大值 二项式系数的性质各二项式系数的和 在二项式定理中,令在二项式定理中,令 ,则:,则: 1bannnnnn2CCCC210 这就是说,这就是说, 的展开式的各二项式系的展开式的各二项式系数的和等于数的和等于:nba)( n2同时由于同时由于 ,上式还可以写成:,上式还可以写成:1C0n12CCCC321nnnnnn这是组合总数公式这是组合总数公式 二项式系数的性质例1.证明在(a+b)n展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和。在二项式定理中,令 ,则: 1, 1 ban
5、nnnnnnnCCCCC) 1(113210 nnnrrnrnnnnnnbCbaCbaCaCba 110)()()(03120 nnnnCCCC 531420nnnnnnCCCCCC1.( 1-x ) 13 的展开式中系数最小的项是( )(A)第6项 (B)第7项 (C)第8项 (D)第9项2.一串装饰彩灯由灯泡串联而成,每串有20个灯泡,只要有一个灯泡坏了,整串灯泡就不亮,则因灯泡损坏致使一串彩灯不亮的可能性的种数为 ( )(A)20 (B)219 (C)220 (D)220 1C CD练习 mCC.mnn同同时时有有最最大大值值,则则与与若若1934或5726701267(1 2 ) xa
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二项式 系数 性质 应用 ppt 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内