2022年高一期末复习平面解析几何知识点和配套练习 2.pdf
《2022年高一期末复习平面解析几何知识点和配套练习 2.pdf》由会员分享,可在线阅读,更多相关《2022年高一期末复习平面解析几何知识点和配套练习 2.pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高 一 期 末 复 习平面解析几何初步课标要求理解直线的倾斜角和斜率的概念,掌握斜率的计算公式,会判定两条直线的位置关系。掌握直线方程的几种形式。掌握两点间、点到直线的距离公式,会求两平行线间的距离。掌握圆的标准方程与一般方程。能够判断直线与圆、圆与圆的位置关系。知识再现直线1. 直线的斜率与倾斜角直线的斜率:已知直线上两点1122( ,), (,)P x yQ x y,直线PQ的斜率为 _ 直线的倾斜角:_与_所成的角叫做这条直线的倾斜角。2. 直线方程的几种形式:点斜式:直线l经过点111(,)P xy,当直线斜率不存在时,直线方程为;当斜率为k时,直线方程为,该方程叫做直线的点斜式方程.
2、 斜截式:方程_叫做直线的斜截式方程,其中叫做直线在上的截距两点式:经过两点111(,)P x y,222(,)P xy12()xx的直线的两点式方程为截距式:方程1xyab(0)ab中,a称为直线在上的截距,b称为直线在上的截距一般式:直线方程的一般式0CByAx中,,A B满足条件,当0A,0B时,方程表示垂直于的直线,当0B,0A时,方程表示垂直于的直线3. 两条直线的位置关系平行 :若已知直线0:1111CyBxAl与直 线0:2222CyBxAl1l2l_重合与21ll_若已知直线222111:,:bxkylbxkyl,那么1l2l_重合与21ll_垂直 :满足 直线0:1111Cy
3、BxAl与直线0:2222CyBxAl垂直的条件是_直线222111:,:bxkylbxkyl垂直的条件是 _4. 圆圆的标准方程以( , )a b为圆心,r为半径的圆的标准方程: . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 9 页圆心在原点(0,0),半径为r时,圆的方程则为:;圆的一般方程形如220 xyDxEyF的都表示圆吗?当2240DEF时,方程表示以为圆心,为半径的圆;当2240DEF时,方程表示;当2240DEF时,;圆的一般方程:5. 直线与圆的位置关系直线与圆的位置关系有_、_、_。设圆心到直线的距离为d,圆半
4、径为r,当时,直线与圆相离; 当时,直线与圆相切 :当时,直线与圆相交6. 圆与圆的位置关系(1)圆与圆之间有 _, _, _,五种位置关系(2)设两圆的半径分别为12,r r,圆心距为d,当时,两圆外离,当时,两圆外切,当时,两圆相交,当时,两圆内切,当时,两圆内含7. 距离(1)平面上两点111222(,),(,)P x yP xy之间的距离公式为12PP(2)中点坐标公式:对于平面上两点111222(,),(,)P xyP xy,线段12PP的中点是00(,)M xy,则 . (3)点00(,)P xy到直线l:0CByAx的距离:(4)空间两点间距离公式典型例题1过点( 1,0)且与直
5、线 x-2y-2=0 平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2、如果22212abc,那么直线0axbyc与圆221xy的位置关系()A、相交B、相切C 、相离D、相交或相切精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 9 页3、圆221xy与圆2211xy公共弦所在的直线方程为()A、1xB、12xC、yxD 、32x4以 A(,)和(,)为端点的线段AB的中垂线方程是A380 xy B 340 xy C 260 xy D 380 xy5. 点( , , )P a
6、 b c到坐标平面zOx的距离为A22ac B a C b D c6直线210 xy关于直线1x对称的直线方程是()210 xy210 xy230 xy230 xy7直线过点 P(0,2) ,且截圆224xy所得的弦长为 2,则直线的斜率为 A32 B2 C33 D38直线1yx与圆221xy的位置关系为()A相切 B相交但直线不过圆心 C直线过圆心D 相离9 已知圆1C :2(1)x+2(1)y=1,圆2C 与圆1C 关于直线10 xy对称,则圆2C 的方程为A2(2)x+2(2)y=1 B2(2)x+2(2)y=1 C2(2)x+2(2)y=1 D2(2)x+2(2)y=1 10圆1622
7、yx上的点到直线03yx的距离的最大值是A223 B2234 C2234 D0 11圆心在y轴上,半径为 1,且过点( 1,2)的圆的方程为()A22(2)1xy B22(2)1xyC22(1)(3)1xyD22(3)1xy12、若方程x2+y2+4kx- 2y+5k=0表示圆,则k的取值范围是()A.141kB. k1C . k=41或k=1D. k为任意实数13、已知 A(x1,y1) 、B(x2,y2)两点的连线平行 y 轴,则 |AB|= ()A、|x1-x2| B、|y1-y2| C、 x2-x1 D、 y2-y114、光线沿直线 2x-y-3=0 经两坐标轴反射后所在的直线是()
8、A、2x+y+3=0 B 、2x+y-3=0 C、2x-y+3=0 D、x-2y-3=0 15、如果 AC 0且BC 0,那么直线 AxByC0不通过()A第一象限B第二象限C第三象限D 第四象限精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 9 页16点( 1,1)在圆 (x-a)2+(y+a)2=4的内部,则 a的取值范围是() A -1a1 B0a1 Ca1 Da=1 17点 P(m2,5 )与圆 x2+y2=24的位置关系是() A 在圆内 B在圆外 C在圆上 D不确定18方程 (x+a)2+(y+b)2=0表示的图形是() A
9、 点( a,b ) B点( -a,-b )C 以( a,b )为圆心的圆 D以( -a,-b )为圆心的圆19如果方程 x2+y2+Dx+Ey+F=0(D2+E2-4F0) 所表示的曲线关于直线y=x 对称,那么必有() A D=E BD=F CE=F DD=E=F 20方程 x4-y4-4x2+4y2=0 所表示的曲线是() A 一个圆 B两条平行直线C 两条平行直线和一个圆 D两条相交直线和一个圆21. 若两直线 y=x+2k 与 y=2x+k+1的交点 P在圆 x2+2=4 的内部, 则 k 的范围是 ( ) A.- 51k-1 B.- 51k1 C.- 31k1 D.-2 k2 22点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高一期末复习平面解析几何知识点和配套练习 2022 年高 一期 复习 平面 解析几何 知识点 配套 练习
限制150内