2022年高中数学经典函数知识点总结 .pdf
《2022年高中数学经典函数知识点总结 .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学经典函数知识点总结 .pdf(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学函数知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。CBAxyyxCxyyBxyxA、,如:集合lg|),(lg|lg|中元素各表示什么?A 表示函数y=lgx 的定义域, B 表示的是值域,而C 表示的却是函数上的点的轨迹2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况注重借助于数轴和文氏图解集合问题。空集是一切集合的子集,是一切非空集合的真子集。如:集合,Ax xxBx ax|22301若,则实数 的值构成的集合为BAa(答:, ,)1013显然,这里很容易解出A=-1,3. 而 B 最多只有一个元素。故B 只能是 -1 或者
2、 3。根据条件,可以得到a=-1,a=1/3. 但是,这里千万小心,还有一个B 为空集的情况,也就是a=0,不要把它搞忘记了。3. 注意以下性质:( )集合,的所有子集的个数是;1212aaann要知道它的来历:假设B 为 A 的子集,则对于元素a1来说,有2 种选择在或者不在 。同样,对于元素a2, a3, an,都有 2 种选择,所以,总共有2n种选择,即集合 A 有2n个子集。当然,我们也要注意到,这2n种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n,非空真子集个数为22n( )若,;2ABABAABB3德摩根定律:CCCCCCUUUUUUABABABAB,有
3、些版本可能是这种写法,遇到后要能够看懂4. 你会用补集思想解决问题吗?排除法、间接法如:已知关于的不等式的解集为,若且,求实数xaxxaMMMa50352的取值范围。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 21 页(,)335305555015392522MaaMaaa注意 ,有时候由集合本身就可以得到大量信息,做题时不要错过;如告 诉你函数f(x)=ax2+bx+c(a0) 在(,1)上单调递减,在(1,)上单调递增,就应该马上知道函数对称轴是 x=1.或者,我说在上,也应该马上可以想到m,n 实际上就是方程的 2 个根5、熟
4、悉命题的几种形式、( )( )( ).可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非”若为真,当且仅当、 均为真pqpq若为真,当且仅当、 至少有一个为真pqpq若为真,当且仅当为假pp命题的四种形式及其相互关系是什么?互为逆否关系的命题是等价命题。原命题与逆否命题同真、同假;逆命题与否命题同真同假。6、熟悉充要条件的性质高考经常考xxA|满足条件p,xxB|满足条件q,假设;则p是q的充分非必要条件BA _;假设;则p是q的必要非充分条件BA _;假设;则p是q的充要条件BA _;假设;则p是q的既非充分又非必要条件_;7. 对映射的概念了解吗?映射f:AB,是否注意到A 中元
5、素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?一对一,多对一,允许B 中有元素无原象。 注意映射个数的求法。如集合A 中有 m 个元素,集合B 中有 n 个元素,则从A 到 B 的映射个数有nm个。如:假设4, 3,2, 1A,,cbaB;问:A到B的映射有个,B到A的映射有个;A到B的函数有个,假设3 ,2 ,1A,则A到B的一一映射有个。函数)(xy的图象与直线ax交点的个数为个。8. 函数的三要素是什么?如何比较两个函数是否相同?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 21 页定义域、对应法则、值域相同函数
6、的判断方法:表达式相同;定义域一致(两点必须同时具备) 9. 求函数的定义域有哪些常见类型?例:函数的定义域是yxxx432lg(答:,)022334函数定义域求法:分式中的分母不为零;偶次方根下的数或式大于或等于零;指数式的底数大于零且不等于一;对数式的底数大于零且不等于一,真数大于零。正切函数xytankkxRx,2,且余切函数xycotkkxRx,且反三角函数的定义域函数 yarcsinx 的定义域是1, 1,值域是,函数 yarccosx 的定义域是1, 1 ,值域是0, ,函数 yarctgx 的定义域是R ,值域是.,函数 yarcctgx的定义域是R ,值域是(0, ) .当以上
7、几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。10. 如何求复合函数的定义域?如:函数的定义域是,则函数的定f xabbaF(xf xfx( )( )()0义域是 _。(答:,)aa复合函数定义域的求法:已知)(xfy的定义域为nm,,求)(xgfy的定义域,可由nxgm)(解出 x 的范围,即为)(xgfy的定义域。例假设函数)(xfy的定义域为2,21,则)(log2xf的定义域为。分析: 由函数)(xfy的定义域为2,21可知:221x;所以)(log2xfy中有精选学习资料 - - - - - - - - - 名师归纳总
8、结 - - - - - - -第 3 页,共 21 页2log212x。解: 依题意知:2log212x解之,得42x)(log2xf的定义域为42|xx11、函数值域的求法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。例 求函数 y=x1的值域2、配方法配方法是求二次函数值域最基本的方法之一。例、求函数y=2x-2x+5 ,x-1 ,2 的值域。3、判别式法对二次函数或者分式函数分子或分母中有一个是二次都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面下面,我把这一类型的详细写出来,希望大家能够看懂.112.22222222ba y型:直接用不等式性质k+x
9、bxb. y型, 先化简,再用均值不等式xmxnx1例: y1+xx+xxmxnc y型 通常用判别式xmxnxmxnd. y型xn法一:用判别式法二:用换元法,把分母替换掉xx1 (x+1) (x+1) +1 1例: y(x+1)1211x1x1x14、反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例 求函数 y=6543xx值域。5、函数有界性法精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 21 页直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三
10、角函数的单调性。例 求函数 y=11xxee,2sin11siny,2sin11cosy的值域。222110112sin11|sin| | 1,1sin22sin12sin1(1cos )1cos2sincos114sin()1,sin()41sin()114即又由知解不等式,求出,就是要求的答案xxxeyyeyeyyyyyyyyyxyxyyxyy6、函数单调性法通常和导数结合,是最近高考考的较多的一个内容例求函数y=25xlog31x2x10的值域7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的
11、值域中同样发挥作用。例 求函数 y=x+1x的值域。8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目假设运用数形结合法,往往会更加简单,一目了然,赏心悦目。例:已知点Px.y 在圆 x2+y2=1 上,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 21 页2,(2),2(,20, (1)的取值范围 (2)y-2的取值范围解:(1) 令则是一条过 (-2,0)的直线 . d为圆心到直线的距离 ,R为半径 ) (2)令y-2即也是直线 d dyxxykyk xxR dxbyxbR例求函数y=)
12、2(2x+)8(2x的值域。解:原函数可化简得:y=x-2 +x+8上式可以看成数轴上点P x到定点A2 ,B-8 间的距离之和。由上图可知:当点P在线段 AB上时,y=x-2 +x+8=AB =10 当点 P在线段 AB的延长线或反向延长线上时,y=x-2 +x+8 AB =10 故所求函数的值域为:10 , +例求函数y=1362xx+ 542xx的值域解:原函数可变形为:y=)20() 3(22x+) 10()2(22x上式可看成x 轴上的点P x,0到两定点A3,2 ,B-2 ,-1 的距离之和,由 图 可 知 当 点P 为 线 段 与x 轴 的 交 点 时 ,ymin= AB=) 1
13、2()23(22=43,故所求函数的值域为43,+ 。注:求两距离之和时,要将函数9 、不等式法利用基本不等式a+b 2ab,a+b+c3abc3 a,b,cR ,求函数的最值,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 21 页其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。例:33()13()32x (3-2x)(0 x1.5)xx+3-2x =xx (3-2x) (应用公式abc时,应注意使3者之和变成常数)abc倒数法有时,直接看不出函数的值域时,把它倒过来之后,你
14、会发现另一番境况例求函数 y=32xx的值域2320121112202222012时,时, =00 xyxxxxyyxxxyy多种方法综合运用总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。12. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?切记:做题,特别是做大题时,一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错误,与到手的总分值失之交臂如:,求fxexf xx1( ).令,则txt10 xt21f tett( )2121f xexxx(
15、 )21210332(0)11113333222x =xx (应用公式a+b+c时,注意使者的乘积变成常数)xxxxxxabc精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 21 页13. 反函数存在的条件是什么?一一对应函数求反函数的步骤掌握了吗?反解x;互换x、 y;注明定义域如:求函数的反函数f xxxxx( )1002(答:)fxxxxx1110( )在更多时候,反函数的求法只是在选择题中出现,这就为我们这些喜欢偷懒的人提供了大方便。请看这个例题:(2004.全国理 )函数)1(11xxy的反函数是B A y=x22x+2(x1
16、) By=x22x+2(x1) Cy=x22x(x=1. 排除选项C,D.现在看值域。原函数至于为 y=1,则反函数定义域为x=1, 答案为 B. 我题目已经做完了,好似没有动笔除非你拿来写*书 。思路能不能明白呢?14. 反函数的性质有哪些?反函数性质:1、反函数的定义域是原函数的值域可扩展为反函数中的x 对应原函数中的y2、反函数的值域是原函数的定义域可扩展为反函数中的y 对应原函数中的x3、反函数的图像和原函数关于直线=x 对称难怪点 x,y和点y,x关于直线y=x对称互为反函数的图象关于直线yx 对称;保存了原来函数的单调性、奇函数性;设的定义域为,值域为,则yf(x)ACaAbCf(
17、a) = bf1( )baff afbaf fbf ab111( )( )( )( ),由反函数的性质,可以快速的解出很多比较麻烦的题目,如04. 上海春季高考 已知函数)24(log)(3xxf,则方程4)(1xf的解 x_. 15 . 如何用定义证明函数的单调性?取值、作差、判正负判断函数单调性的方法有三种:(1) 定义法:根据定义,设任意得x1,x2,找出 f(x1),f(x2)之间的大小关系精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 21 页可以变形为求1212()()f xf xxx的正负号或者12()()f xf x与
18、1 的关系(2) 参照图象:假设函数f(x) 的图象关于点 (a ,b)对称,函数f(x) 在关于点 (a,0)的对称区间具有相同的单调性;特例:奇函数假设函数f(x)的图象关于直线xa 对称,则函数f(x) 在关于点 (a,0) 的对称区间里具有相反的单调性。 特例:偶函数(3) 利用单调函数的性质:函数 f(x) 与 f(x) c(c 是常数 ) 是同向变化的函数 f(x) 与 cf(x)(c是常数 ) ,当 c0 时,它们是同向变化的;当c0 时,它们是反向变化的。如果函数f1(x) ,f2(x) 同向变化, 则函数 f1(x) f2(x) 和它们同向变化;函数相加如果正值函数f1(x)
19、 ,f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;如果负值函数 f1(2) 与 f2(x) 同向变化,则函数f1(x)f2(x)和它们反向变化;函数相乘函数 f(x) 与1( )fx在 f(x)的同号区间里反向变化。假设函数u(x) ,x , 与函数 yF(u) ,u ( ) ,( ) 或 u (),( ) 同向变化,则在 , 上复合函数yF (x) 是递增的;假设函数u(x),x, 与函数yF(u) ,u ( ) ,( ) 或 u ( ) ,( ) 反向变化,则在 , 上复合函数yF(x)是递减的。同增异减假设函数yf(x)是严格单调的,则其反函数xf1(y) 也是严格单调的
20、,而且,它们的增减性相同。如:求 yxxlog1222(设,由uxxu22且,如图:log12211uuxu O 1 2 x 当,时,又,xuuy(log0112f(g) g(x) fg(x) f(x)+g(x) f(x)*g(x) 都 是 正数增增增增增增减减/ / 减增减/ / 减减增减减精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 21 页当,时,又,xuuy)log121216. 如何利用导数判断函数的单调性?在区间,内,若总有则为增函数。(在个别点上导数等于abfxf x( )( )0零,不影响函数的单调性),反之也对,若呢
21、?fx( )0如:已知,函数在,上是单调增函数,则的最大af xxaxa013( )值是A. 0 (令 fxxaxaxa( )333302则或xaxa33由已知在,上为增函数,则,即f xaa( )1313a的最大值为317. 函数 f(x) 具有奇偶性的必要非充分条件是什么? f(x)定义域关于原点对称若总成立为奇函数函数图象关于原点对称fxf xf x()( )( )若总成立为偶函数函数图象关于轴对称fxf xf xy()( )( )注意如下结论: 1在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。( )若是奇函数且定义域中有原点,则。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高中数学经典函数知识点总结 2022 年高 数学 经典 函数 知识点 总结
限制150内