2022年数列与不等式交汇题型 .pdf
《2022年数列与不等式交汇题型 .pdf》由会员分享,可在线阅读,更多相关《2022年数列与不等式交汇题型 .pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载数列与不等式的交汇题型分析及解题策略数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查 .主要考查知识重点和热点是数列的通项公式、前n 项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数学归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用.此类题型主要考查学生对知识的灵活变通、融合与迁移, 考查学生数学视野的广度和进一步学习数学的潜能如考查数列与不等式恒成立条件下的参数问题、考查数列与不等式交汇的探索性问题等等.杂在近年高考中,比较新颖的数列与不等式选择题或填空题一定会出现.数列解答题的命题热点是
2、与不等式交汇,呈现递推关系的综合性试题.其中 ,以函数与数列、 不等式为命题载体,有着高等数学背景的数列与不等式的交汇试题是未来高考命题的一个新的亮点,而命题的冷门则是数列与不等式综合的应用性解答题. 要掌握考试动态必先了解考试要求,知己知彼方能百战不殆:1理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项2理解等差数列的概念掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题3理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。4理解不等式的性质及其证明5掌握两个(不扩展到三个)正数的算术平均数
3、不小于它们的几何平均数的定理,并会简单的应用6掌握分析法、综合法、比较法证明简单的不等式7掌握简单不等式的解法及理解不等式 a b a+b a + b近年数列与不等式交汇题考察点:1以客观题考查不等式的性质、解法与数列、等差数列、等比数列的简单交汇. 2以解答题以中档题或压轴题的形式考查数列与不等式的交汇,还有可能涉及到导数、解析几何、三角函数的知识等,深度考查不等式的证明(主要比较法、综合法、分析法、放缩法、数学归纳法、反证法)和逻辑推理能力及分类讨论、化归的数学思想,试题新颖别致,难度相对较大 . 3将数列与不等式的交汇渗透于递推数列及抽象数列中进行考查,主要考查转化及方程的思想 . 精选
4、学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 6 页学习必备欢迎下载典例分析题型一求有数列参与的不等式恒成立条件下参数问题求得数列与不等式绫结合恒成立条件下的参数问题主要两种策略:(1)若函数 f(x)在定义域为 D,则当 xD 时,有 f(x) M恒成立f(x)minM ;f(x)M 恒成立f(x)maxM ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得. 【例 1】等比数列 an的公比q1,第 17 项的平方等于第24 项,求使a1a2 an1a11a2 1an恒成立的正整数n 的取值范围 . 【分析】利用条件
5、中两项间的关系,寻求数列首项a1与公比q 之间的关系,再利用等比数列前n 项公式和及所得的关系化简不等式,进而通过估算求得正整数n 的取值范围 . 【解】由题意得: (a1q16)2a1q23, a1q91. 由等比数列的性质知:数列 1an是以1a1为首项,以1q为公比的等比数列,要使不等式成立,则须a1(qn1)q 11a11(1q)n11q,把 a21q18代入上式并整理,得q18(qn1)q(11qn),qnq19, q1, n19,故所求正整数n的取值范围是n20.【点评】本题解答数列与不等式两方面的知识都用到了,主要体现为用数列知识化简,用不等式知识求得最后的结果.本题解答体现了转
6、化思想、方程思想及估算思想的应用. 【例 2】设数列 an的前n项和为 Sn已知 a1a,an+1Sn3n,nN*()设 bnSn3n,求数列 bn的通项公式; ()若an+1an,nN*,求 a 的取值范围【分析】第()小题利用Sn与 an的关系可求得数列的通项公式;第()小题将条件 an+1an转化为关于n 与 a的关系,再利用a f(n) 恒成立等价于a f(n)min求解【解】()依题意, Sn+1Sn an+1Sn3n,即 Sn+12Sn 3n,由此得 Sn+13 n+12(Sn3n)因此,所求通项公式为bnSn 3n(a3)2 n 1,n N*, ()由知 Sn3n(a3)2 n
7、1,nN* ,于是,当 n2 时, anSnSn 13n(a3)2 n 13n 1(a3)2 n 223n 1(a3)2 n 2,an+1an 43 n 1(a3)2 n 22 n 2 12 (32)n 2 a3,当 n2 时, an+1an,即 2 n 2 12 (32)n 2a3 0 ,12 (32)n 2a 30 , a 9,综上,所求的a 的取值范围是9, 【点评】一般地,如果求条件与前n 项和相关的数列的通项公式,则可考虑Sn与 an的关系求解 .本题求参数取值范围的方法也一种常用的方法,应当引起重视. 题型二数列参与的不等式的证明问题此类不等式的证明常用的方法:(1)比较法,特别是
8、差值比较法是最根本的方法;(2)分精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 6 页学习必备欢迎下载析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的. 【例 3】已知数列 an是等差数列,其前n 项和为 Sn, a3 7,S424()求数列 an的通项公式; ()设 p、q 都是正整数,且p q,证明: Sp+q12(S2pS2q)【分析】根据条件首先利用等差数列的通项公式及前n 项公式和建立方程组即可解决第 ()小题;第 ( )小题利用差值比较
9、法就可顺利解决. 【解】( )设等差数列 an的公差是d,依题意得,a12d 74a16d24,解得a1 3d2,数列 an的通项公式为ana1(n1)d2n1. ()证明: an2n1,Snn(a1an)2 n2 2n2Sp+q(S2pS2q)2(p q)22(pq)(4p24p)(4q24q) 2(p q)2,p q, 2Sp+q(S2pS2q)0, Sp+q12(S2pS2q)【点评】利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解; ( 2)化平方和的形式; (3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化. 【例 4】设数列
10、an满足 a10,an+1can3 1c,c N*,其中c 为实数 .()证明:an0, 1对任意 nN* 成立的充分必要条件是c0, 1; ()设 0c13, 证明:an1 (3c)n 1,nN*; ()设 0 c13,证明: a12a22 an2n1213c,nN*. 【分析】第(1)小题可考虑用数学归纳法证明;第(2)小题可利用综合法结合不等关系的迭代;第(3)小题利用不等式的传递性转化等比数列,然后利用前n 项和求和,再进行适当放缩 . 【解】 ( )必要性: a10,a2 1c,又a20,1,01 c1 ,即 c0,1. 充分性:设c0,1,对 nN*用数学归纳法证明an0, 1.
11、(1)当 n1 时, a10,1. (2)假设当 nk 时, ak 0, 1(k 1)成立,则ak1 cak3 1cc1c1,且 ak1 cak31c1 c0 ,ak10,1,这就是说n k1 时, an0, 1. 由( 1) 、 (2)知,当c0,1时,知 an0,1对所胡 nN* 成立 . 综上所述, an0, 1对任意 nN*成立的充分必要条件是c0,1. ()设 0c13,当 n1 时, a10,结论成立 . 当 n2 时,由 ancan 131c,1anc(1 an 1)(1an 1an 12) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - -
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年数列与不等式交汇题型 2022 数列 不等式 交汇 题型
限制150内