八年级一次函数与反比例函数知识点总结.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《八年级一次函数与反比例函数知识点总结.pdf》由会员分享,可在线阅读,更多相关《八年级一次函数与反比例函数知识点总结.pdf(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一次函数与反比例函数知识点总结基本概念1、变量: 在一个变化过程中可以取不同数值的量。常量: 在一个变化过程中只能取同一数值的量。例题:在匀速运动公式vts中,v表示速度 ,t表示时间 ,s表示在时间t内所走的路程, 则变量是 _, 常量是_。在圆的周长公式C=2r 中,变量是 _,常量是 _. 2、函数: 一般的,在一个变化过程中,如果有两个变量x 和 y,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是 x 的函数。*判断 Y是否为 X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应例题:下列函数(1)y=x (2
2、)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x2-1 中,是一次函数的有()(A)4 个(B)3 个(C)2 个(D)1 个3、定义域: 一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;( 4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。例题:下列函数中,自变量x 的取值范围是x 2 的是()A y=2x By=12x Cy=24x D
3、y=2x2x函数5yx中自变量x的取值范围是_. 已知函数221xy,当11x时,y的取值范围是()A.2325y B.2523y C.2523y D.2523y5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大
4、的顺序把所描出的各点用平滑曲线连接起来)。8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象直观,但只能近似地表达两个变量之间的函数关系。9、正比例函数及性质一般地,形如y=kx(k 是常数, k0)的函数叫做正比例函数,其中k 叫做比例系数 . 注:正比例函数一般形式 y=kx (k不为零 ) k 不为零 x 指数为 1 b取零当 k0 时,直线 y=kx 经过三、一象限,从左向右上升,即随x 的增大
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 一次 函数 反比例 知识点 总结
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内