2022年初二数学下学期知识归纳 .pdf
《2022年初二数学下学期知识归纳 .pdf》由会员分享,可在线阅读,更多相关《2022年初二数学下学期知识归纳 .pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载二次根式1二次根式:一般地,式子)0a(,a叫做二次根式.注意: (1)若0a这个条件不成立,则a不是二次根式; (2)a是一个重要的非负数,即;a0. 2重要公式:(1))0a(a)a(2, (2))0a(a)0a(aaa2;注意使用)0a()a(a2. 3积的算术平方根:)0b,0a(baab,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式, 对字母的取值范围一般都有要求. 4二次根式的乘法法则:)0b,0a(abba. 5二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小. 6商的
2、算术平方根:)0b,0a(baba,商的算术平方根等于被除式的算术平方根除以除式的算术平方根. 7二次根式的除法法则:(1))0b,0a(baba;(2))0b,0a(baba;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式. 8 常 用 分 母 有 理 化 因 式 :aa 与,baba与,bnambnam与,它们也叫互为有理化因式. 9最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式, 被开方数的因数是整数,因式是整式, 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字
3、母因式次数低于2,且不含分母;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 12 页学习必备欢迎下载(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式. 10二次根式化简题的几种类型: (1)明显条件题; (2)隐含条件题; (3)讨论条件题. 11同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式. 12二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的, 在有理数范围内的一切公式和
4、运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并; 除法运算有时转化为分母有理化或约分更为简便; 使用乘法公式等. 四边形几何 A级概念: (要求深刻理解、熟练运用、主要用于几何证明)1四边形的内角和与外角和定理:(1)四边形的内角和等于360;(2)四边形的外角和等于360. 几何表达式举例:(1) A+B+C+D=360 (2) 1+2+3+4=360 2多边形的内角和与外角和定理:(1)n 边形的内角和等于(n-2)180;(2)任意多边形的外角和等于360. 几何表达式举例:略ABCD1234ABCD精选学习资料 -
5、 - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 12 页学习必备欢迎下载3平行四边形的性质:因为ABCD 是平行四边形.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(几何表达式举例:(1) ABCD 是平行四边形AB CD AD BC (2) ABCD 是平行四边形AB=CD AD=BC (3) ABCD 是平行四边形ABC= ADC DAB= BCD (4) ABCD 是平行四边形OA=OC OB=OD (5) ABCD 是平行四边形CDA+ BAD=1804.平行四边形的判定:是平行四边
6、形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD54321. 几何表达式举例:(1) AB CD AD BC 四边形 ABCD 是平行四边形(2) AB=CD AD=BC 四边形 ABCD 是平行四边形(3) 5.矩形的性质:因为ABCD 是矩形.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所((2) (1)(3) 几何表达式举例:(1) (2) ABCD 是矩形 A= B= C=D=90 (3) ABCD 是矩形AC=BD ABDOCABDOCADBCADBCO精选学习资料 - - - - - - - - -
7、 名师归纳总结 - - - - - - -第 3 页,共 12 页学习必备欢迎下载6. 矩形的判定:边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321四边形 ABCD是矩形. (1)(2) (3) 几何表达式举例:(1) ABCD 是平行四边形又A=90 四边形 ABCD 是矩形(2) A=B=C=D=90 四边形 ABCD 是矩形(3) 7菱形的性质:因为ABCD 是菱形.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(几何表达式举例:(1) (2) ABCD 是菱形AB=BC=CD=DA (3) ABCD 是菱形AC BD ADB= CD
8、B 8菱形的判定:边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321四 边 形 四 边 形ABCD 是菱形. 几何表达式举例:(1) ABCD 是平行四边形DA=DC 四边形 ABCD 是菱形(2) AB=BC=CD=DA 四边形 ABCD 是菱形(3) ABCD 是平行四边形AC BD 四边形 ABCD 是菱形9正方形的性质:因为ABCD 是正方形几何表达式举例:(1) (2) ABCD 是正方形AB=BC=CD=DA CDBAOCDBAOADBCADBCO精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 12 页
9、学习必备欢迎下载.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所(CDAB(1)ABCDO(2)(3) A= B= C=D=90 (3) ABCD 是正方形AC=BD AC BD 10正方形的判定:一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321四 边 形ABCD 是正方形. (3)ABCD 是矩形又AD=AB 四边形 ABCD是正方形几何表达式举例:(1) ABCD 是平行四边形又AD=AB ABC=90 四边形 ABCD 是正方形(2) ABCD 是菱形又ABC=90 四边形 ABCD 是正方形11等腰梯形的性质:因
10、为ABCD 是等腰梯形.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)(几何表达式举例:(1) ABCD 是等腰梯形AD BC AB=CD (2) ABCD 是等腰梯形ABC= DCB BAD= CDA (3) ABCD 是等腰梯形AC=BD 12等腰梯形的判定:几何表达式举例:(1) ABCD 是梯形且 AD ABCDOCDAB精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 12 页学习必备欢迎下载对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321四边形 ABCD 是等腰梯形 (3)ABCD 是梯形且AD B
11、C AC=BD ABCD 四边形是等腰梯形BC 又AB=CD 四边形 ABCD 是等腰梯形(2) ABCD 是梯形且 AD BC 又ABC= DCB 四边形 ABCD 是等腰梯形13平行线等分线段定理与推论:(1)如果一组平行线在一条直线上截得的线段相等, 那么在其它直线上截得的线段也相等;(2)经过梯形一腰的中点与底平行的直线必平分另一腰; (如图)(3)经过三角形一边的中点与另一边平行的直线必平分第三边.(如图) (2) (3) 几何表达式举例:(1) (2) ABCD 是梯形且 AB CD 又DE=EA EF AB CF=FB (3) AD=DB 又DE BC AE=EC 14三角形中位
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年初二数学下学期知识归纳 2022 年初 数学 下学 知识 归纳
限制150内