求导公式练习及导数与切线方程.pdf
《求导公式练习及导数与切线方程.pdf》由会员分享,可在线阅读,更多相关《求导公式练习及导数与切线方程.pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 考点分析: 以解答题的形式考查函数的单调性和极值;近几年高考对导数的考查每年都有,选择题、填空题、解答题都出现过,且最近两年有加强的趋势。知识点一:常见基本函数的导数公式(1)(C 为常数),(2)(n 为有理数),(3),(4),(5),(6),(7),(8),知识点二:函数四则运算求导法则设,均可导(1)和差的导数:(2)积的导数:(3)商的导数:()知识点三:复合函数的求导法则1.一般地,复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数,即或题型一:函数求导练习例一:函数y=exsinx 的导数等于例二:函数y=(x2+1)ex的导数为2 例三:函数f
2、(x) =cos(2 3x)的导数等于_变式练习:1求函数y=的导数2求函数y=(1+cos2x)2的导数3求 y=e2xcos3x 的导数题型二:用导数求切线方程的四种类型求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P xy,及斜率,其求法为:设00()P xy,是曲线( )yf x 上的一点,则以P的切点的切线方程为:000()()yyfxxx若曲线( )yf x 在点00()P xf x,的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为0 xx 下面例析四种常见的类型及解法类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数
3、( )fx ,并代入点斜式方程即可例 1曲线3231yxx在点 (11),处的切线方程为()3 34yx32yx43yx45yx解 : 由2()36fxxx则 在 点 (11),处 斜 率(1)3kf, 故 所 求 的 切 线 方 程 为( 1)3(1)yx,即32yx,因而选类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决例 2与直线 240 xy的平行的抛物线2yx 的切线方程是() 230 xy 230 xy 210 xy 210 xy解:设00()P xy,为切点,则切点的斜率为0022xxyx|01x由此得到切点(11), 故切线方程为12(1)yx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 求导 公式 练习 导数 切线 方程
限制150内