16版 全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).doc
《16版 全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).doc》由会员分享,可在线阅读,更多相关《16版 全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).doc(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2016年全国统一高考数学试卷(理科)(新课标)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)已知z=(m+3)+(m1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A(3,1)B(1,3)C(1,+)D(,3)2(5分)已知集合A=1,2,3,B=x|(x+1)(x2)0,xZ,则AB等于()A1B1,2C0,1,2,3D1,0,1,2,33(5分)已知向量=(1,m),=(3,2),且(+),则m=()A8B6C6D84(5分)圆x2+y22x8y+13=0的圆心到直线ax+y1=0的距离为1,则a=()ABCD25(5分)
2、如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A24B18C12D96(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A20B24C28D327(5分)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()Ax=(kZ)Bx=+(kZ)Cx=(kZ)Dx=+(kZ)8(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A7B12C17D349(5分)若cos
3、()=,则sin2=()ABCD10(5分)从区间0,1随机抽取2n个数x1,x2,xn,y1,y2,yn构成n个数对(x1,y1),(x2,y2)(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率的近似值为()ABCD11(5分)已知F1,F2是双曲线E:=1的左,右焦点,点M在E上,MF1与x轴垂直,sinMF2F1=,则E的离心率为()ABCD212(5分)已知函数f(x)(xR)满足f(x)=2f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),(xm,ym),则(xi+yi)=()A0BmC2mD4m二、填空题:本题共4小题
4、,每小题5分13(5分)ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b= 14(5分),是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么如果m,n,那么mn如果,m,那么m如果mn,那么m与所成的角和n与所成的角相等其中正确的命题是 (填序号)15(5分)有三张卡片,分别写有1和2,1和3,2和3甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 16(5分)若直线y=kx+b是曲线y=l
5、nx+2的切线,也是曲线y=ln(x+1)的切线,则b= 三、解答题:解答应写出文字说明、证明过程或演算步骤17(12分)Sn为等差数列an的前n项和,且a1=1,S7=28,记bn=lgan,其中x表示不超过x的最大整数,如0.9=0,lg99=1()求b1,b11,b101;()求数列bn的前1000项和18(12分)某保险的基本保费为a(单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数012345保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数012345概率0.300
6、.150.200.200.100.05()求一续保人本年度的保费高于基本保费的概率;()若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;()求续保人本年度的平均保费与基本保费的比值19(12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点H,将DEF沿EF折到DEF的位置,OD=()证明:DH平面ABCD;()求二面角BDAC的正弦值20(12分)已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k0)的直线交E于A,M两点,点N在E上,MANA()当t=4,|AM|=|AN|时,
7、求AMN的面积;()当2|AM|=|AN|时,求k的取值范围21(12分)()讨论函数f(x)=ex的单调性,并证明当x0时,(x2)ex+x+20;()证明:当a0,1)时,函数g(x)=(x0)有最小值设g(x)的最小值为h(a),求函数h(a)的值域请考生在第2224题中任选一个题作答,如果多做,则按所做的第一题计分.选修4-1:几何证明选讲22(10分)如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DFCE,垂足为F()证明:B,C,G,F四点共圆;()若AB=1,E为DA的中点,求四边形BCGF的面积选修4-4:坐标系与参数方程23在直角
8、坐标系xOy中,圆C的方程为(x+6)2+y2=25()以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;()直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率选修4-5:不等式选讲24已知函数f(x)=|x|+|x+|,M为不等式f(x)2的解集()求M;()证明:当a,bM时,|a+b|1+ab|2016年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)已知z=(m+3)+(m1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A(3
9、,1)B(1,3)C(1,+)D(,3)【考点】A4:复数的代数表示法及其几何意义菁优网版权所有【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数【分析】利用复数对应点所在象限,列出不等式组求解即可【解答】解:z=(m+3)+(m1)i在复平面内对应的点在第四象限,可得:,解得3m1故选:A【点评】本题考查复数的几何意义,考查计算能力2(5分)已知集合A=1,2,3,B=x|(x+1)(x2)0,xZ,则AB等于()A1B1,2C0,1,2,3D1,0,1,2,3【考点】1D:并集及其运算菁优网版权所有【专题】11:计算题;35:转化思想;4O:定义法;5J:集合【分析
10、】先求出集合A,B,由此利用并集的定义能求出AB的值【解答】解:集合A=1,2,3,B=x|(x+1)(x2)0,xZ=0,1,AB=0,1,2,3故选:C【点评】本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用3(5分)已知向量=(1,m),=(3,2),且(+),则m=()A8B6C6D8【考点】9H:平面向量的基本定理菁优网版权所有【专题】11:计算题;35:转化思想;4R:转化法;5A:平面向量及应用【分析】求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案【解答】解:向量=(1,m),=(3,2),+=(4,m2),又(+),122(m2)=0
11、,解得:m=8,故选:D【点评】本题考查的知识点是向量垂直的充要条件,难度不大,属于基础题4(5分)圆x2+y22x8y+13=0的圆心到直线ax+y1=0的距离为1,则a=()ABCD2【考点】IT:点到直线的距离公式;J9:直线与圆的位置关系菁优网版权所有【专题】35:转化思想;4R:转化法;5B:直线与圆【分析】求出圆心坐标,代入点到直线距离方程,解得答案【解答】解:圆x2+y22x8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y1=0的距离d=1,解得:a=,故选:A【点评】本题考查的知识点是圆的一般方程,点到直线的距离公式,难度中档5(5分)如图,小明从街道的E处出发,先
12、到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A24B18C12D9【考点】D2:分步乘法计数原理;D9:排列、组合及简单计数问题菁优网版权所有【专题】12:应用题;34:方程思想;49:综合法;5O:排列组合【分析】从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,由组合数可得最短的走法,同理从F到G,最短的走法,有C31=3种走法,利用乘法原理可得结论【解答】解:从E到F,每条东西向的街道被分成2段,每条南北向的街道被分成2段,从E到F最短的
13、走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,故共有C42C22=6种走法同理从F到G,最短的走法,有C31C22=3种走法小明到老年公寓可以选择的最短路径条数为63=18种走法故选:B【点评】本题考查排列组合的简单应用,得出组成矩形的条件和最短走法是解决问题的关键,属基础题6(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A20B24C28D32【考点】L!:由三视图求面积、体积菁优网版权所有【专题】15:综合题;35:转化思想;49:综合法;5F:空间位置关系与距离【分析】空间几何
14、体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面【解答】解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长是=4,圆锥的侧面积是24=8,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,圆柱表现出来的表面积是22+224=20空间组合体的表面积是28,故选:C【点评】本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样
15、的弊端7(5分)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()Ax=(kZ)Bx=+(kZ)Cx=(kZ)Dx=+(kZ)【考点】H6:正弦函数的奇偶性和对称性;HJ:函数y=Asin(x+)的图象变换菁优网版权所有【专题】35:转化思想;49:综合法;57:三角函数的图像与性质【分析】利用函数y=Asin(x+)(A0,0)的图象的变换及正弦函数的对称性可得答案【解答】解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=k+(kZ)得:x=+(kZ),即平移后的图象的对称轴方程为x=+(kZ),故选:B
16、【点评】本题考查函数y=Asin(x+)(A0,0)的图象的变换规律的应用及正弦函数的对称性质,属于中档题8(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A7B12C17D34【考点】EF:程序框图菁优网版权所有【专题】11:计算题;28:操作型;5K:算法和程序框图【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案【解答】解:输入的x=2,n=2,当输入的a为2时,S=2,k=1,不满足退出循环的条件;当再次输入的a为2时,S=6
17、,k=2,不满足退出循环的条件;当输入的a为5时,S=17,k=3,满足退出循环的条件;故输出的S值为17,故选:C【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答9(5分)若cos()=,则sin2=()ABCD【考点】GF:三角函数的恒等变换及化简求值菁优网版权所有【专题】36:整体思想;4R:转化法;56:三角函数的求值【分析】法1:利用诱导公式化sin2=cos(2),再利用二倍角的余弦可得答案法:利用余弦二倍角公式将左边展开,可以得sin+cos的值,再平方,即得sin2的值【解答】解:法1:cos()=,sin2=cos(2)=cos2(
18、)=2cos2()1=21=,法2:cos()=(sin+cos)=,(1+sin2)=,sin2=21=,故选:D【点评】本题考查三角函数的恒等变换及化简求值,熟练掌握诱导公式化与二倍角的余弦是关键,属于中档题10(5分)从区间0,1随机抽取2n个数x1,x2,xn,y1,y2,yn构成n个数对(x1,y1),(x2,y2)(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率的近似值为()ABCD【考点】CF:几何概型菁优网版权所有【专题】11:计算题;34:方程思想;49:综合法;5I:概率与统计【分析】以面积为测度,建立方程,即可求出圆周率的近似值【解答】
19、解:由题意,两数的平方和小于1,对应的区域的面积为12,从区间0,1】随机抽取2n个数x1,x2,xn,y1,y2,yn,构成n个数对(x1,y1),(x2,y2),(xn,yn),对应的区域的面积为12=故选:C【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到11(5分)已知F1,F2是双曲线E:=1的左,右焦点,点M在E上,MF1与x轴垂直,sinMF2F1=,则E的离心率为()ABCD2【考点】KC:双曲线的性质菁优网版权所有【专题】31:数形结合;44:数形结合法
20、;5D:圆锥曲线的定义、性质与方程【分析】由条件MF1MF2,sinMF2F1=,列出关系式,从而可求离心率【解答】解:由题意,M为双曲线左支上的点,则丨MF1丨=,丨MF2丨=,sinMF2F1=,=,可得:2b4=a2c2,即b2=ac,又c2=a2+b2,可得e2e=0,e1,解得e=故选:A【点评】本题考查双曲线的定义及离心率的求解,关键是找出几何量之间的关系,考查数形结合思想,属于中档题12(5分)已知函数f(x)(xR)满足f(x)=2f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),(xm,ym),则(xi+yi)=()A0BmC2mD4m【考点】3P
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 函数 不等式 三角函数 公式 几何
限制150内