13版 全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).doc
《13版 全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).doc》由会员分享,可在线阅读,更多相关《13版 全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).doc(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2013年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题每小题5分,共60分在每个小题给出的四个选项中,只有一项是符合题目要求的1(5分)已知集合M=x|(x1)24,xR,N=1,0,1,2,3,则MN=()A0,1,2B1,0,1,2C1,0,2,3D0,1,2,32(5分)设复数z满足(1i)z=2i,则z=()A1+iB1iC1+iD1i3(5分)等比数列an的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1=()ABCD4(5分)已知m,n为异面直线,m平面,n平面直线l满足lm,ln,l,l,则()A且lB且lC与相交,且交线垂直于lD与相交,且交线平
2、行于l5(5分)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A4B3C2D16(5分)执行右面的程序框图,如果输入的N=10,那么输出的S=()ABCD7(5分)一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()ABCD8(5分)设a=log36,b=log510,c=log714,则()AcbaBbcaCacbDabc9(5分)已知a0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A2B1CD10(5分)已知函数f(x)
3、=x3+ax2+bx+c,下列结论中错误的是()Ax0R,f(x0)=0B函数y=f(x)的图象是中心对称图形C若x0是f(x)的极小值点,则f(x)在区间(,x0)单调递减D若x0是f(x)的极值点,则f(x0)=011(5分)设抛物线C:y2=2px(p0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()Ay2=4x或y2=8xBy2=2x或y2=8xCy2=4x或y2=16xDy2=2x或y2=16x12(5分)已知点A(1,0),B(1,0),C(0,1),直线y=ax+b(a0)将ABC分割为面积相等的两部分,则b的取值范围是()A(0,1)B
4、CD二、填空题:本大题共4小题,每小题5分13(5分)已知正方形ABCD的边长为2,E为CD的中点,则= 14(5分)从n个正整数1,2,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n= 15(5分)设为第二象限角,若tan(+)=,则sin+cos= 16(5分)等差数列an的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为 三解答题:解答应写出文字说明,证明过程或演算步骤:17(12分)ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB()求B;()若b=2,求ABC面积的最大值18(12分)如图,直棱柱ABCA1B1C1中,D,E
5、分别是AB,BB1的中点,AA1=AC=CB=AB()证明:BC1平面A1CD()求二面角DA1CE的正弦值19(12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示经销商为下一个销售季度购进了130t该农产品以x(单位:t,100x150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润()将T表示为x的函数;()根据直方图估计利润T不少于57000元的概率;()在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量
6、落入该区间的频率作为需求量取该区间中点值的概率(例如:若x100,110)则取x=105,且x=105的概率等于需求量落入100,110)的频率,求T的数学期望20(12分)平面直角坐标系xOy中,过椭圆M:(ab0)右焦点的直线x+y=0交M于A,B两点,P为AB的中点,且OP的斜率为()求M的方程()C,D为M上的两点,若四边形ACBD的对角线CDAB,求四边形ACBD面积的最大值21(12分)已知函数f(x)=exln(x+m)()设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;()当m2时,证明f(x)0选考题:(第22题第24题为选考题,考生根据要求作答请考生在第22、23
7、、24题中任选择一题作答,如果多做,则按所做的第一部分评分,作答时请写清题号)22(10分)【选修41几何证明选讲】如图,CD为ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB与弦AC上的点,且BCAE=DCAF,B、E、F、C四点共圆(1)证明:CA是ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与ABC外接圆面积的比值23已知动点P、Q都在曲线(为参数)上,对应参数分别为=与=2(02),M为PQ的中点(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为的函数,并判断M的轨迹是否过坐标原点24【选修45;不等式选讲】设a,b,c
8、均为正数,且a+b+c=1,证明:()()2013年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题每小题5分,共60分在每个小题给出的四个选项中,只有一项是符合题目要求的1(5分)已知集合M=x|(x1)24,xR,N=1,0,1,2,3,则MN=()A0,1,2B1,0,1,2C1,0,2,3D0,1,2,3【考点】1E:交集及其运算;73:一元二次不等式及其应用菁优网版权所有【专题】11:计算题【分析】求出集合M中不等式的解集,确定出M,找出M与N的公共元素,即可确定出两集合的交集【解答】解:由(x1)24,解得:1x3,即M=x|1x3,N=1,0,
9、1,2,3,MN=0,1,2故选:A【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键2(5分)设复数z满足(1i)z=2i,则z=()A1+iB1iC1+iD1i【考点】A5:复数的运算菁优网版权所有【专题】11:计算题【分析】根据所给的等式两边同时除以1i,得到z的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果【解答】解:复数z满足z(1i)=2i,z=1+i故选:A【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算3(5分)等比数列an的前n项和为Sn,已知S3=a2+10a1,a5=9,
10、则a1=()ABCD【考点】89:等比数列的前n项和菁优网版权所有【专题】54:等差数列与等比数列【分析】设等比数列an的公比为q,利用已知和等比数列的通项公式即可得到,解出即可【解答】解:设等比数列an的公比为q,S3=a2+10a1,a5=9,解得故选:C【点评】熟练掌握等比数列的通项公式是解题的关键4(5分)已知m,n为异面直线,m平面,n平面直线l满足lm,ln,l,l,则()A且lB且lC与相交,且交线垂直于lD与相交,且交线平行于l【考点】LJ:平面的基本性质及推论;LQ:平面与平面之间的位置关系菁优网版权所有【专题】5F:空间位置关系与距离【分析】由题目给出的已知条件,结合线面平
11、行,线面垂直的判定与性质,可以直接得到正确的结论【解答】解:由m平面,直线l满足lm,且l,所以l,又n平面,ln,l,所以l由直线m,n为异面直线,且m平面,n平面,则与相交,否则,若则推出mn,与m,n异面矛盾故与相交,且交线平行于l故选:D【点评】本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题5(5分)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A4B3C2D1【考点】DA:二项式定理菁优网版权所有【专题】5I:概率与统计【分析】由题意利用二项展开式的通项公式求得展开式中x
12、2的系数为+a=5,由此解得a的值【解答】解:已知(1+ax)(1+x)5=(1+ax)(1+x+x2+x3+x4+x5) 展开式中x2的系数为+a=5,解得a=1,故选:D【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题6(5分)执行右面的程序框图,如果输入的N=10,那么输出的S=()ABCD【考点】EF:程序框图菁优网版权所有【专题】27:图表型【分析】从赋值框给出的两个变量的值开始,逐渐分析写出程序运行的每一步,便可得到程序框图表示的算法的功能【解答】解:框图首先给累加变量S和循环变量i赋值,S=0+1=1,k=1+1=2;判断k10不成立
13、,执行S=1+,k=2+1=3;判断k10不成立,执行S=1+,k=3+1=4;判断k10不成立,执行S=1+,k=4+1=5;判断i10不成立,执行S=,k=10+1=11;判断i10成立,输出S=算法结束故选:B【点评】本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,找规律7(5分)一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()ABCD【考点】L7:简单空间图形的三视图菁优网版权所有【专题】11:计算题;13:作图题【分析】由题意
14、画出几何体的直观图,然后判断以zOx平面为投影面,则得到正视图即可【解答】解:因为一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为:故选:A【点评】本题考查几何体的三视图的判断,根据题意画出几何体的直观图是解题的关键,考查空间想象能力8(5分)设a=log36,b=log510,c=log714,则()AcbaBbcaCacbDabc【考点】4M:对数值大小的比较菁优网版权所有【专题】11:计算题【分析】利用loga(xy)=lo
15、gax+logay(x、y0),化简a,b,c然后比较log32,log52,log72大小即可【解答】解:因为a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,因为y=log2x是增函数,所以log27log25log23,所以log32log52log72,所以abc,故选:D【点评】本题主要考查不等式与不等关系,对数函数的单调性的应用,不等式的基本性质的应用,属于基础题9(5分)已知a0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A2B1CD【考点】7C:简单线性规划菁优网版权所有【专题】59:不等式的解法及应用【分析】作出
16、不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=2x+z,平移直线y=2x+z,由图象可知当直线y=2x+z经过点C时,直线y=2x+z的截距最小,此时z最小即2x+y=1,由,解得,即C(1,1),点C也在直线y=a(x3)上,1=2a,解得a=故选:C【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法10(5分)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()Ax0R,f(x0)=0B函数y=f(x)的图象是中心对称图形C若x0是f(x)
17、的极小值点,则f(x)在区间(,x0)单调递减D若x0是f(x)的极值点,则f(x0)=0【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值菁优网版权所有【专题】53:导数的综合应用【分析】利用导数的运算法则得出f(x),分0与0讨论,列出表格,即可得出【解答】解:f(x)=3x2+2ax+b(1)当=4a212b0时,f(x)=0有两解,不妨设为x1x2,列表如下 x(,x1)x1(x1,x2)x2(x2,+)f(x)+00+f(x)单调递增极大值单调递减极小值单调递增由表格可知:x2是函数f(x)的极小值点,但是f(x)在区间(,x2)不具有单调性,故C不正确+f(x)=
18、+x3+ax2+bx+c=+2c,=,+f(x)=,点P为对称中心,故B正确由表格可知x1,x2分别为极值点,则,故D正确x时,f(x);x+,f(x)+,函数f(x)必然穿过x轴,即xR,f(x)=0,故A正确(2)当0时,故f(x)在R上单调递增,此时不存在极值点,故D正确,C不正确;B同(1)中正确;x时,f(x);x+,f(x)+,函数f(x)必然穿过x轴,即x0R,f(x0)=0,故A正确综上可知:错误的结论是C由于该题选择错误的,故选:C【点评】熟练掌握导数的运算法则、中心得出的定义、单调性与极值的关系等基础知识与方法,考查了分类讨论的思想方法等基本方法11(5分)设抛物线C:y2
19、=2px(p0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()Ay2=4x或y2=8xBy2=2x或y2=8xCy2=4x或y2=16xDy2=2x或y2=16x【考点】K7:抛物线的标准方程菁优网版权所有【专题】11:计算题;16:压轴题;5D:圆锥曲线的定义、性质与方程【分析】根据抛物线方程算出|OF|=,设以MF为直径的圆过点A(0,2),在RtAOF中利用勾股定理算出|AF|=再由直线AO与以MF为直径的圆相切得到OAF=AMF,RtAMF中利用AMF的正弦建立关系式,从而得到关于p的方程,解之得到实数p的值,进而得到抛物线C的方程【解答】解:
20、抛物线C方程为y2=2px(p0),焦点F坐标为(,0),可得|OF|=,以MF为直径的圆过点(0,2),设A(0,2),可得AFAM,RtAOF中,|AF|=,sinOAF=,根据抛物线的定义,得直线AO切以MF为直径的圆于A点,OAF=AMF,可得RtAMF中,sinAMF=,|MF|=5,|AF|=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x故选:C方法二:抛物线C方程为y2=2px(p0),焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 函数 不等式 三角函数 公式 几何
限制150内