四中中考复习数理化语英习集 中考冲刺 数形结合问题 知识讲解基础.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《四中中考复习数理化语英习集 中考冲刺 数形结合问题 知识讲解基础.doc》由会员分享,可在线阅读,更多相关《四中中考复习数理化语英习集 中考冲刺 数形结合问题 知识讲解基础.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中考冲刺:数形结合问题知识讲解(基础)撰稿:李爱国 审稿:杜少波【中考展望】1用数形结合的思想解题可分两类: (1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常常要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,“数”的常见表现形式为: 实数、代数式、函数和不等式等,而“形”的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数图象对应一条直线,二次函数的图像对应着一条抛物线,这些都是初中数学的重要内容.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问
2、题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法. 数形结合解题基本思路:“数”和“形”是数学中两个最基本的概念, 每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的知识,解决几何的问题.实现了抽象概念与具体图形的联系和转
3、化,化难为易,化抽象为直观. 特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,a的符号决定抛物线的开口方向,b与a 一起决定抛物线的对称轴的位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线图形的平移,只是顶点坐标发生变化,其实从代数的角度看是b、c 的有关变化.在日常的数学学习中应注意养成数形相依的观念,有意识培养数形结合思想,形成数形统一意识,提高解题能力“数缺形时少直观,形缺数时难入
4、微”总之,要把数形结合思想贯穿在数学学习中数与形及其相互关系是数学研究的基本内容【典型例题】类型一、利用数形结合探究数字的变化规律1. 如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第个图形需要黑色棋子的个数是 【思路点拨】首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.第1个图形是23-3,第2个图形是34-4,第3个图形是45-5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n2+2n【答案与解析】第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋(23
5、-3)个;第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子(34-4)个; 第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子(45-5)个; 按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n(n+2). 故答案为n(n+2)=n2+2n.【总结升华】这样的试题从最简单的图形入手.找出图形中黑点的个数与第n个图形之间的关系,找规律需要列出算式,一律采用原题中的数据,不要用到计算出来的结果来找规律.举一反三:【变式】用棋子按下列方式摆图形,依照此规律,第n个图形比第(n-1)个图形多_枚棋子【答案】解:设
6、第n个图形的棋子数为第1个图形,S1=1;第2个图形,S2=1+4;第3个图形,S3=1+4+7;第n个图形,Sn=1+4+3n-2;第(n-1)个图形,Sn-1=1+4+3(n-1)-2;则第n个图形比第(n-1)个图形多(3n-2)枚棋子类型二、 利用数形结合解决数与式的问题 2.已知实数a、b、c在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是 ().A.a+c B.-a-2b+c C.a+2b-c D.-a-c【思路点拨】首先从数轴上a、b、c的位置关系可知:ca0;b0且|b|a|,接着可得a+b0,c-b0,然后即可化简|a+b|-|c-b|可得结果 具体步骤为: a,b
7、,c的具体位置,在原点左边的小于0,原点右边的大于0.比较绝对值的大小.|a|c|b|.化简原式中的每一部分,看看绝对值内部(二次根式中的被开方数的底数)的性质,若大于零,直接提出来,若小于零,则取原数的相反数.进行化简计算,得出最后结果.【答案与解析】解:从数轴上a、b、c的位置关系可知:ca0;b0且|b|a|,故a+b0,c-b0,即有|a+b|-|c-b|=a+b+c-b=a+c故选A【总结升华】此题主要考查了利用数形结合的思想和方法来解决绝对值与数轴之间的关系,进而考察了非负数的运用.数轴的特点:从原点向右为正数,向左为负数,及实数与数轴上的点的对应关系非负数在初中的范围内,有三种形
8、式:绝对值(|a|),完全平方式(ab)2,二次根式(.性质:非负数有最小值是0;几个非负数的和等于0,那么每一个非负数都等于0.类型三、利用数形结合解决代数式的恒等变形问题3. 图是一个边长为的正方形,小颖将图中的阴影部分拼成图的形状,由图和图能验证的式子是( )A. B. C. D. 【思路点拨】这是完全平方公式的几何背景,用几何图形来分析和理解完全平方公式的实质.是一个很典型的“数形结合”的例子,用图形的变换来帮助理解代数学中的枯燥无味的数学公式.根据图示可知,阴影部分的面积是边长为(m+n)的正方形的面积减去中间白色的小正方形的面积(m2+n2),即为对角线分别是2m,2n的菱形的面积
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四中中考复习数理化语英习集 中考冲刺 数形结合问题 知识讲解基础 中考 复习 数理化 语英习集 冲刺 结合 问题 知识 讲解 基础
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内