初中数学题库试题考试试卷 第23讲__圆与圆.doc
《初中数学题库试题考试试卷 第23讲__圆与圆.doc》由会员分享,可在线阅读,更多相关《初中数学题库试题考试试卷 第23讲__圆与圆.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 新课标九年级数学竞赛辅导讲座第二十三讲 圆与圆 圆与圆的位置关系有外离、外切、相交、内切、内含五种情形,判定两圆的位置关系有如下三种方法: 1通过两圆交点的个数确定; 2通过两圆的半径与圆心距的大小量化确定; 3通过两圆的公切线的条数确定 为了沟通两圆,常常添加与两圆都有联系的一些线段,如公共弦、共切线、连心线,以及两圆公共部分相关的角和线段,这是解圆与圆位置关系问题的常用辅助线 熟悉以下基本图形、基本结论:【例题求解】【例1】 如图,Ol与半径为4的O2内切于点A,Ol经过圆心O2,作O2的直径BC交Ol于点D,EF为过点A的公切线,若O2D=,那么BAF= 度 (重庆市中考题)思路点拨
2、直径、公切线、O2的特殊位置等,隐含丰富的信息,而连O2Ol必过A点,先求出D O2A的度数注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通同时,又是生成圆幂定理的重要因素(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解 【例2】 如图,Ol与O2外切于点A,两圆的一条外公切线与O1相切于点B,若AB与两圆的另一条外公切线平行,则Ol 与O2的半径之比为( ) A2:5 B1:2 C1:3 D2:3 (全国初中数学联赛试题)思路点拨 添加辅助线
3、,要探求两半径之间的关系,必须求出COlO2 (或DO2Ol)的度数,为此需寻求CO1B、CO1A、BO1A的关系【例3】 如图,已知Ol与O2相交于A、B两点,P是Ol上一点,PB的延长线交O2于点C,PA交O2于点D,CD的延长线交Ol于点N(重庆市中考题) (1)过点A作AECN交Oll于点E,求证:PA=PE; (2)连结PN,若PB=4,BC=2,求PN的长 思路点拨 (1)连AB,充分运用与圆相关的角,证明PAE=PEA;(2)PBPC=PDPA,探寻PN、PD、PA对应三角形的联系【例4】 如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD并延长交大
4、圆于点E,连结BE交AC于点F,已知AC=,大、小两圆半径差为2 (1)求大圆半径长; (2)求线段BF的长; (3)求证:EC与过B、F、C三点的圆相切 (宜宾市中考题)思路点拨 (1)设大圆半径为R,则小圆半径为R-2,建立R的方程;(2)证明EBCECF;(3)过B、F、C三点的圆的圆心O,必在BF上,连OC,证明OCE=90注:本例以同心圆为背景,综合了垂径定理、直径所对的圆周角为直角、切线的判定、勾股定理、相似三角形等丰富的知识作出圆中基本辅助线、运用与圆相关的角是解本例的关键 【例5】 如图,AOB是半径为1的单位圆的四分之一,半圆O1的圆心O1在OA上,并与弧AB内切于点A,半圆
5、O2的圆心O2在OB上,并与弧AB内切于点B,半圆O1与半圆O2相切,设两半圆的半径之和为,面积之和为 (太原市竞赛题) (1)试建立以为自变量的函数的解析式; (2)求函数的最小值 思路点拨 设两圆半径分别为R、r,对于(1),通过变形把R2+r2用“=R+r”的代数式表示,作出基本辅助线;对于(2),因=R+r,故是在约束条件下求的最小值,解题的关键是求出R+r的取值范围注:如图,半径分别为r、R的Ol 、O2外切于C,AB,CM分别为两圆的公切线,OlO2与AB交于P点,则: (1)AB=2; (2) ACB=Ol M O2=90;(3)PC2=PAPB; (4)sinP=; (5)设C
6、到AB的距离为d,则 学力训练1已知:Ol和O2交于A、B两点,且Ol经过点O2,若AOlB=90,则A O2B的度数是 2矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆相切,点D在圆C内,点B在圆C外,那么圆A的半径r的取值范围 (2003年上海市中考题)3如图;Ol 、O2相交于点A、B,现给出4个命题: (1)若AC是O2的切线且交Ol于点C,AD是Ol的切线且交O2于点D,则AB2=BCBD; (2)连结AB、OlO2,若OlA=15cm,O2A=20cm,AB=24cm,则OlO2=25cm; (3)若CA是Ol的直径,DA是O2 的一条非直径的弦,且点D、B不重
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中数学题库试题考试试卷 第23讲_圆与圆 初中 数学 题库 试题 考试 试卷 23 _
限制150内