极限与连续--复习ppt课件.ppt
《极限与连续--复习ppt课件.ppt》由会员分享,可在线阅读,更多相关《极限与连续--复习ppt课件.ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 主要内容主要内容 一一.极限极限 二二.连续连续 极限与连续复习极限与连续复习左右极限左右极限两个重要两个重要极限极限求极限的常用方法求极限的常用方法无穷小无穷小的性质的性质极限存在的极限存在的充要条件充要条件判定极限判定极限存在的准则存在的准则无穷小的比较无穷小的比较极限的性质极限的性质数列极限数列极限函函 数数 极极 限限axnn limAxfxx )(lim0Axfx )(lim等价无穷小等价无穷小及其性质及其性质唯一性唯一性无穷小无穷小0)(lim xf两者的两者的关系关系无穷大无穷大 )(limxf1.极限极限:左极限左极限右极限右极限.)0()(lim0)(000AxfAxfxx
2、xx 或或记作记作.)0()(lim0)(000AxfAxfxxxx 或或记作记作.)0()0()(lim:000AxfxfAxfxx 定理定理无穷小无穷小:极限为零的变量称为极限为零的变量称为无穷小无穷小.).0)(lim(0)(lim0 xfxfxxx或或记作记作绝对值无限增大的变量称为绝对值无限增大的变量称为无穷大无穷大.无穷大无穷大:).)(lim()(lim0 xfxfxxx或或记作记作在同一过程中在同一过程中, ,无穷大的倒数为无穷小无穷大的倒数为无穷小; ;恒不为恒不为零的无穷小的倒数为无穷大零的无穷小的倒数为无穷大. .无穷小与无穷大的关系无穷小与无穷大的关系2 2、无穷小与无
3、穷大、无穷小与无穷大定理定理1 在同一过程中在同一过程中,有限个无穷小的代数和有限个无穷小的代数和仍是无穷小仍是无穷小.定理定理2 有界函数与无穷小的乘积是无穷小有界函数与无穷小的乘积是无穷小.推论推论1 在同一过程中在同一过程中,有极限的变量与无穷小的有极限的变量与无穷小的乘积是无穷小乘积是无穷小.推论推论2 常数与无穷小的乘积是无穷小常数与无穷小的乘积是无穷小.推论推论3 有限个无穷小的乘积也是无穷小有限个无穷小的乘积也是无穷小.无穷小的运算性质无穷小的运算性质定理定理. 0,)()(lim)3(;)()(lim)2(;)()(lim)1(,)(lim,)(lim BBAxgxfBAxgx
4、fBAxgxfBxgAxf其中其中则则设设推论推论1 1).(lim)(lim,)(limxfcxcfcxf 则则为常数为常数而而存在存在如果如果.)(lim)(lim,)(limnnxfxfnxf 则则是正整数是正整数而而存在存在如果如果推论推论2 23 3、极限的性质、极限的性质4 4、求极限的常用方法、求极限的常用方法a.多项式与分式函数代入法求极限多项式与分式函数代入法求极限;b.消去零因子法求极限消去零因子法求极限;c.利用无穷小运算性质求极限利用无穷小运算性质求极限;d.利用左右极限求分段函数极限利用左右极限求分段函数极限.准准则则 如如果果当当),(00rxUx (或或Mx )时
5、时,有有,)(lim,)(lim)2(),()()()1()()(00AxhAxgxhxfxgxxxxxx 那那末末)(lim)(0 xfxxx 存存在在,且且等等于于A.5 5、判定极限存在的准则、判定极限存在的准则准准则则 单单调调有有界界数数列列必必有有极极限限.(夹逼准则夹逼准则)(1)1sinlim0 xxx(2)exxx )11(limexxx 10)1(lim; 1sinlim 某过程某过程.)1(lim1e 某过程某过程6 6、两个重要极限、两个重要极限);(, 0lim)1( o记作记作高阶的无穷小高阶的无穷小是比是比就说就说如果如果定义定义: :. 0, 且且穷小穷小是同一
6、过程中的两个无是同一过程中的两个无设设;),0(lim)2(是同阶的无穷小是同阶的无穷小与与就说就说如果如果 CC;, 1lim 记作记作是等价的无穷小是等价的无穷小与与则称则称如果如果特殊地特殊地7 7、无穷小的比较、无穷小的比较定理定理(等价无穷小替换定理等价无穷小替换定理).limlim,lim, 则则存在存在且且设设.),0, 0(lim)3(无穷小无穷小阶的阶的是是是是就说就说如果如果kkCCk 定理定理 若若)(limxf存在存在,则极限唯一则极限唯一.8、等价无穷小的性质、等价无穷小的性质9、极限的唯一性、极限的唯一性左右连续左右连续在区间在区间a,ba,b上连续上连续连续函数连
7、续函数的的 性性 质质初等函数初等函数的连续性的连续性间断点定义间断点定义连连 续续 定定 义义0lim0 yx)()(lim00 xfxfxx 连续的连续的充要条件充要条件连续函数的连续函数的运算性质运算性质 振荡间断点振荡间断点 无穷间断点无穷间断点 跳跃间断点跳跃间断点 可去间断点可去间断点第一类第一类 第二类第二类定义定义1 1 设函数设函数)(xf在点在点0 x的某一邻域内有定义的某一邻域内有定义, ,如果当自变量的增量如果当自变量的增量x 趋向于零时趋向于零时, ,对应的函数对应的函数的增量的增量y 也趋向于零也趋向于零, ,即即0lim0 yx 或或 0)()(lim000 xf
8、xxfx那末就称函数那末就称函数)(xf在点在点0 x连续连续, ,0 x称为称为)(xf的连的连续点续点. .二二. .连续连续 1 1、连续的定义、连续的定义).()(lim200 xfxfxx 定义定义定理定理.)()(00既左连续又右连续既左连续又右连续处处在在是函数是函数处连续处连续在在函数函数xxfxxf.)(),()0(,),)(0000处右连续处右连续在点在点则称则称且且内有定义内有定义在在若函数若函数xxfxfxfbxxf 3 3、连续的充要条件、连续的充要条件2 2、单侧连续、单侧连续;)(),()0(,()(0000处左连续处左连续在点在点则称则称且且内有定义内有定义在在
9、若函数若函数xxfxfxfxaxf :)(0条件条件处连续必须满足的三个处连续必须满足的三个在点在点函数函数xxf;)()1(0处有定义处有定义在点在点xxf;)(lim)2(0存在存在xfxx).()(lim)3(00 xfxfxx ).()(),()(,00或间断点或间断点的不连续点的不连续点为为并称点并称点或间断或间断处不连续处不连续在点在点函数函数则称则称要有一个不满足要有一个不满足如果上述三个条件中只如果上述三个条件中只xfxxxf4 4、间断点的定义、间断点的定义(1) 跳跃间断点跳跃间断点.)(),0()0(,)(0000的跳跃间断点的跳跃间断点为函数为函数则称点则称点但但存在存
10、在右极限都右极限都处左处左在点在点如果如果xfxxfxfxxf (2)可去间断点可去间断点.)()(),()(lim,)(00000的可去间断点的可去间断点为函数为函数义则称点义则称点处无定处无定在点在点或或但但处的极限存在处的极限存在在点在点如果如果xfxxxfxfAxfxxfxx 5 5、间断点的分类、间断点的分类跳跃间断点与可去间断点统称为跳跃间断点与可去间断点统称为第一类间断点第一类间断点.特点特点: :.,0右极限都存在右极限都存在处的左处的左函数在点函数在点x可去型可去型第一类间断点第一类间断点跳跃型跳跃型0yx0 x0yx0 x0yx无穷型无穷型振荡型振荡型第二类间断点第二类间断
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 极限 连续 复习 ppt 课件
限制150内