2021-2022年收藏的精品资料专题12 探索性问题第04期中考数学试题分项版解析汇编原卷版.doc
《2021-2022年收藏的精品资料专题12 探索性问题第04期中考数学试题分项版解析汇编原卷版.doc》由会员分享,可在线阅读,更多相关《2021-2022年收藏的精品资料专题12 探索性问题第04期中考数学试题分项版解析汇编原卷版.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题12 探索性问题一、选择题1. (2017内蒙古通辽第10题)如图,点在直线上方,且,于,若线段,则与的函数关系图象大致是( )AB C D 2. (2017广西百色第11题)以坐标原点为圆心,作半径为2的圆,若直线与相交,则的取值范围是( )A B C. D3. (2017海南第13题)已知ABC的三边长分别为4、4、6,在ABC所在平面内画一条直线,将ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条A3B4C5D64. (2017新疆乌鲁木齐第9题)如图,在矩形中,点在上,点在上,把这个矩形沿折叠后,使点恰好落在边上的点处,若矩形面积为且,则折痕的长为(
2、) A B C. D 5.(2017青海西宁第10题)如图,在正方形中,动点自点出发沿方向以每秒的速度运动,同时动点自点出发沿折线以每秒的速度运动,到达点时运动同时停止,设的面积为,运动时间为(秒),则下列图象中能大致反映与之间的函数关系的是( )A B C. D二、填空题1. (2017贵州遵义第15题)按一定规律排列的一列数依次为: ,1,按此规律,这列数中的第100个数是2. (2017贵州遵义第17题)如图,AB是O的直径,AB=4,点M是OA的中点,过点M的直线与O交于C,D两点若CMA=45,则弦CD的长为3. (2017内蒙古通辽第15题)在平行四边形中,平分交边于,平分交边于.
3、若,则 .4. (2017湖南常德第16题)如图,有一条折线A1B1A2B2A3B3A4B4,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,个单位得到的,直线y=kx+2与此折线恰有2n(n1,且为整数)个交点,则k的值为 5. (2017黑龙江齐齐哈尔第16题)如图,在等腰三角形纸片中,沿底边上的高剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是 6. (2017黑龙江齐齐哈尔第19题)如图,在平面直角坐标系中,等腰直角三角形的直角边在轴的正半轴上,且,以为直角边作第二个等腰直角三角形,以为直角边作第三个等腰直角三角形,
4、则点的坐标为 7. (2017黑龙江绥化第20题)在等腰中,交直线于点,若,则的顶角的度数为 8. (2017内蒙古呼和浩特第15题)如图,在中,是两条对角线的交点,过点作的垂线分别交边,于点,点是边的一个三等分点,则与的面积比为 9.(2017湖南张家界第14题)如图,在正方形ABCD中,AD=,把边BC绕点B逆时针旋转30得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为 三、解答题1. (2017贵州遵义第24题)如图,PA、PB是O的切线,A、B为切点,APB=60,连接PO并延长与O交于C点,连接AC,BC(1)求证:四边形ACBP是菱形;(2)若O半径为1,
5、求菱形ACBP的面积2. (2017贵州遵义第26题)边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;(3)猜想PF与EQ的数量关系,并证明你的结论3. (2017贵州遵义第27题)如图,抛物线y=ax2+bxab(a0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+(1)求该抛物线的函数关系式与C
6、点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M,将OM绕原点O顺时针旋转得到ON(旋转角在0到90之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值4. (2017湖南株洲第24题)如图所示,RtPAB的直角顶点P(3,4)在函数y=(x0)的图象上,
7、顶点A、B在函数y=(x0,0tk)的图象上,PAx轴,连接OP,OA,记OPA的面积为SOPA,PAB的面积为SPAB,设w=SOPASPAB求k的值以及w关于t的表达式; 若用wmax和wmin分别表示函数w的最大值和最小值,令T=wmax+a2a,其中a为实数,求Tmin5. (2017内蒙古通辽第25题)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;依次类推,若第次操作余下的四边形是菱形,则称原平行四边形为阶准菱形,如图1,为1阶准菱形.(1)猜想与计算邻边长分别为3和5的平行四边形是 阶
8、准菱形;已知的邻边长分别为(),满足,请写出是 阶准菱形.(2)操作与推理小明为了剪去一个菱形,进行如下操作:如图2,把沿折叠(点在上),使点落在边上的点处,得到四边形.请证明四边形是菱形.6. (2017内蒙古通辽第26题)在平面直角坐标系中,抛物线过点,与轴交于点.(1)求抛物线的函数表达式;(2)若点在抛物线的对称轴上,求的周长的最小值;(3)在抛物线的对称轴上是否存在点,使是直角三角形?若存在,直接写出点的坐标,若不存在,请说明理由.7. (2017郴州第25题) 如图,已知抛物线与轴交于两点,与轴交于点,且,直线与轴交于点,点是抛物线上的一动点,过点作轴,垂足为,交直线于点.(1)试
9、求该抛物线的表达式;(2)如图(1),若点在第三象限,四边形是平行四边形,求点的坐标;(3)如图(2),过点作轴,垂足为,连接, 求证:是直角三角形;试问当点横坐标为何值时,使得以点为顶点的三角形与相似?8. (2017郴州第26题)如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿的方向以的速度运动,当不与点重合是,将绕点逆时针方向旋转得到,连接. (1)求证:是等边三角形; (2)当时,的周长是否存在最小值?若存在,求出的最小周长;若不存在,请说明理由.(3)当点在射线上运动时,是否存在以为顶点的三角形是直角三角形?若存在,求出此时的值;若不存在,请说明理由.9. (2017湖北咸
10、宁第23题)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.理解:如图,已知是上两点,请在圆上找出满足条件的点,使为“智慧三角形”(画出点的位置,保留作图痕迹);如图,在正方形中,是的中点,是上一点,且,试判断是否为“智慧三角形”,并说明理由;运用:如图,在平面直角坐标系中,的半径为,点是直线上的一点,若在上存在一点,使得为“智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.10. (2017湖北咸宁第24题)如图,抛物线与轴交于两点,与轴交于点,其对称轴交抛物线于点,交轴于点,已知.求抛物线的解析式及点的坐标;连接为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022年收藏的精品资料专题12 探索性问题第04期中考数学试题分项版解析汇编原卷版 2021 2022 收藏 精品
链接地址:https://www.taowenge.com/p-32466798.html
限制150内