2022年指数函数对数函数教案 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年指数函数对数函数教案 .pdf》由会员分享,可在线阅读,更多相关《2022年指数函数对数函数教案 .pdf(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载第二章 基本初等函数2.1.1 指数与指数幂的运算2.1.1 (1)根式目标展示: 1. 掌握整数指数幂的表示方法及运算. 2.“0”的指数幂是 0. 自学指导: 1. 什么是平方根?什么是立方根?2. 一个数的平方根有几个?立方根有几个? 3.若234,xa xa xa根据上面的结论我们又能得到什么? 4.根据上面的结论我们能得到一般性结论吗?请用一个式子表达。自学检测:1. 求下列各式的值:(1)33( 8) ; (2)2( 10) ;(3)2(3);(4)66()ab 2. 下列各式正确的是() A 44a B.22( 2) C.01a D.510( 21)21当堂训练:
2、1. 化简下列各式:(1)681;(2)1532;(3)84x ;(4)624a b ; 2. 若 58a, 则式子(5)(8)aa的值为 _. 3.52 652 6_. 课堂小结: 1. 如果nxa,那么x叫a的n次方根,其中+1nnN且. 用式子na表示,式子na叫根式。其中a叫被开方数,n叫根指数 . 2.掌握两个公式:当,0,() =() =| |=- , 0,a(1)1051025255=() =aaaa; (2)884242=() =aaaa;(3)1212343444=() =aaaa; (4)1010525222=() =aaaa; 3.利用 2 的规律,你能表示下列式子吗?(
3、1)735 ;(2)357 ; (3)57a ;(4)+( 1,)nmxxm nN. 4.推广上述式子 . 自学检测: 1. 求值: (1)238 ;(2)1-225;(3)-512(). 2.用分数指数幂表示下列各式. (1)3aa;(2)322aa ;(3)3a a . 当堂训练: 1. 计算下列各式(式中的字母都是正数). (1)211511336622(2)(-6)(-3)a ba ba b;(2)31-884()m n;(3)346627()125mn. 课堂小结:1. 正数的正分数指数的意义是+=( 0,)nmnmaaam nN,正数的负分数指数幂的意义是-+11=( 0,)nmn
4、mnmaam nNaa. “0”的正分数指数是0,负分数指数没有意义 . 2.指数运算法则:( ,); (,)()( ,); ()()mmnm nm nnmnmnnnnaaaam nZam nZaaam nZababnZ教学后记:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 5 页学习必备欢迎下载2.1.2 指数函数及其性质2.1.2 (1)指数函数的定义及性质目标展示: 1. 理解、掌握指数函数的定义. 2.学会由图象、解析式归纳指数函数的性质。自学指导:问题 1 从 2000 年起的未来 20 年,我国国内生产总值年平均增长率可达
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年指数函数对数函数教案 2022 指数函数 对数 函数 教案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内