2021-2022年收藏的精品资料专题15 应用题第06期中考数学试题分项版解析汇编解析版.doc
《2021-2022年收藏的精品资料专题15 应用题第06期中考数学试题分项版解析汇编解析版.doc》由会员分享,可在线阅读,更多相关《2021-2022年收藏的精品资料专题15 应用题第06期中考数学试题分项版解析汇编解析版.doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题15 应用题一、 选择题1.(2017玉林崇左第10题)如图,一艘轮船在处测得灯塔位于其北偏东方向上,轮船沿正东方向航行30海里到达处后,此时测得灯塔位于其北偏东方向上,此时轮船与灯塔的距离是( )A.海里B.30海里C.45海里D.海里【答案】B.【解析】根据题意,得BAD=30,BD=15海里,PBD=60,则DPB=30,BP=152=30(海里),故选B考点:解直角三角形的应用方向角问题;勾股定理的应用.二、 填空题1(2017湖北黄石市第14题)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45,随后沿直线
2、BC向前走了100米后到达D处,在D处测得A处的仰角大小为30,则建筑物AB的高度约为 米(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:1.41,1.73)【答案】137【解析】试题分析:设AB=x米,在RtABC中,ACB=45,BC=AB=x米,则BD=BC+CD=x+100(米),在RtABD中,ADB=30,tanADB=,即=,解得:x=50+50137,即建筑物AB的高度约为137米故答案为:137考点:解直角三角形的应用仰角俯角问题2.(2017湖北荆门市第16题)已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈4
3、0岁时,则派派的年龄为 岁.【答案】12.【解析】设今年派派的年龄为x岁,则妈妈的年龄为(36x)岁,根据题意得:36x+5=4(x+5)+1,解得:x=4,36xx=28,4028=12(岁)故答案为:12考点:一元一次方程的应用.学科.网4(2017辽宁葫芦岛第16题)一艘货轮又西向东航行,在A处测得灯塔P在它的北偏东60方向,继续航行到达B处,测得灯塔P在正南方向4海里的C处是港口,点A,B,C在一条直线上,则这艘货轮由A到B航行的路程为 海里(结果保留根号)【答案】(44)【解析】考点: 解直角三角形的应用、勾股定理的应用5(2017江苏泰州市第14题)小明沿着坡度i为1:的直路向上走
4、了50m,则小明沿垂直方向升高 m【答案】25试题分析:如图,过点B作BEAC于点E,来源:学科网坡度:i=1:,tanA=1:=,A=30,AB=50m,BE=AB=25(m)他升高了25m考点:解直角三角形的应用.三、 解答题1(2017贵州遵义市22题)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为8036(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角
5、为30,求引桥BC的长(长度均精确到1m,参考数据:1.73,sin80360.987,cos80360.163,tan80366.06)【答案】(1).168m;(2). 32m【解析】(1)由题意知ABP=30、AP=97,AB=cm.答:主桥AB的长度约为168m;(2)ABP=30、AP=97,PB=2PA=194,又DBC=DBA=90、PBA=30,DBP=DPB=60,PBD是等边三角形,DB=PB=194,在RtBCD中,C=8036,BC=32,答:引桥BC的长约为32m考点:解直角三角形的应用仰角俯角问题2(2017贵州遵义市25题)为厉行节能减排,倡导绿色出行,今年3月以
6、来“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放 辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值【答案】问题1:A、B两型自行车的单价分别是70元
7、和80元;问题2:a的值为15【解析】问题1来源:Zxxk.Com设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,1000+1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15考点:分式方程的应用;二元一次方程组的应用3.(2017辽宁营口第22题)如图,一艘船以每小时30海里的速度向北偏东75方向航行,在点 处测得码头 的船的东北方向,航行40分钟后到达处,这时码头恰好在船的正北方向,在船不改变航向的情况下,求
8、出船在航行过程中与码头的最近距离.(结果精确的01海里,参考数据 )【答案】船在航行过程中与码头C的最近距离是13.7海里.【解析】由题意可知:船在航行过程中与码头C的最近距离是CE,AB=30=20,NAC=45,NAB=75,DAB=30,BD=AB=10,由勾股定理可知:AD=10BCAN,BCD=45,CD=BD=10,AC=10+10DAB=30,CE=AC=5+513.7答:船在航行过程中与码头C的最近距离是13.7海里考点:解直角三角形的应用方向角问题;KU:勾股定理的应用.4.(2017辽宁营口第24题)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)
9、完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第天生产空调台,直接写出与之间的函数解析式,并写出自变量的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第天的利润为元,试求与之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.【答案】(1)y=40+2x(1x10);(2),第5天,46000元.【解析】试题解析:(1)接到任务的第一天就生产了空
10、调42台,以后每天生产的空调都比前一天多2台,由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1x10); (2)当1x5时,W=(29202000)(40+2x)=1840x+36800,18400,W随x的增大而增大,当x=5时,W最大值=18405+36800=46000;当5x10时,W=2920200020(40+2x50)(40+2x)=80(x4)2+46080,来源:学科网此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,当x=6时,W最大值=45760元4600045760,当x=5时,W最大,且W最大值=46000元综上所
11、述:考点:二次函数的应用;分段函数.学/科网5(2017湖北黄石市第23题)小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:该蔬菜的销售价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9x;该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系,已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克(1)求该二次函数的解析式;(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售价平均成本)【答案】(1);(2)4月份的平均利润L最大,最
12、大平均利润是3元/千克【解析】试题解析:(1)将x=4、y=2和x=6、y=1代入,得:,解得:, ;(2)根据题意,知L=Py=9x()=,当x=4时,L取得最大值,最大值为3答:4月份的平均利润L最大,最大平均利润是3元/千克考点:二次函数的应用;最值问题;二次函数的最值6. (2017山东潍坊第20题)(本题满分8分)如图,某数学兴趣小组要测量一栋五层居民楼的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在处测得五楼顶部点的仰角为,在处测得四楼顶部点的仰角为,米.求居民楼的高度(精确到0.1米,参考数据:1.73).【答案】18.4米【解析】来源:
13、学科网由题意得:MC=MCCC=2.51.5=1米,DC=5x+1,EC=4x+1,在RtDCA中,DAC=60,CA=(5x+1),在RtECB中,EBC=30,CB=(4x+1),AB=CBCA=AB,(4x+1)(5x+1)=14,解得:x3.17,则居民楼高为53.17+2.518.4米考点:解直角三角形的应用仰角俯角问题7. (2017山东潍坊第21题)(本题满分8分)某蔬菜加工公司先后两批次收购蒜薹(tai)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨,这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加
14、工,分为粗加工和精加工两种粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?【答案】(1)第一批购进蒜薹20吨,第二批购进蒜薹80吨(2)m=75时,w有最大值为85000元【解析】试题分析:(1)设第一批购进蒜薹x吨,第二批购进蒜薹y吨构建方程组即可解决问题(2)设精加工m吨,总利润为w元,则粗加工吨由m3,解得m75,利润w=1000m+400=600m+40000,构建一次函数的性质即可解决问题试题解析:(1)设第一批购进蒜薹x吨,第二批购进蒜薹y吨由题意,解得,答:第一批购进蒜薹20吨,第二批购
15、进蒜薹80吨(2)设精加工m吨,总利润为w元,则粗加工吨由m3,解得m75,利润w=1000m+400=600m+40000,6000,w随m的增大而增大,m=75时,w有最大值为85000元考点:1、一次函数的应用;2、二元一次方程组的应用8. (2017山东潍坊第23题)(本题满分9分)工人师傅用一块长为10,宽为6的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形,(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为
16、0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?【答案】(1)裁掉的正方形的边长为2dm,底面积为12dm2(2)当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元【解析】试题分析:(1)由题意可画出图形,设裁掉的正方形的边长为xdm,则题意可列出方程,可求得答案;(2)由条件可求得x的取值范围,用x可表示出总费用,利用二次函数的性质可求得其最小值,可求得答案试题解析:(1)如图所示:设裁掉的正方形的边长为xdm,由题意可得(102x)(62x)=12,即x28x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为1
17、2dm2;当x=2.5时,w有最小值,最小值为25元,答:当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元考点:1、二次函数的应用;2、一元二次方程的应用9.(2017湖北恩施第20题)如图9,小明家在学校的北偏东方向,距离学校80米的处,小华家在学校的南偏东方向的处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:,)【答案】小华家到学校的距离大约为82米试题分析:作OCAB于C,由已知可得ABO中A=60,B=45且OA=80m,要求OB的长,可以先求出OC和BC的长试题解析:由题意可知:作OCAB于C,ACO=BCO=90,AOC=30,BOC=
18、45在RtACO中,ACO=90,AOC=30,AC=AO=40m,OC=AC=40m在RtBOC中,BCO=90,BOC=45,BC=OC=40mOB=40402.4582(米)答:小华家到学校的距离大约为82米考点:解直角三角形的应用.10.(2017湖北恩施第22题)为积极响应政府提出的“绿色发展低碳出行”号召,某社区决定购置一批共享单车,经市场调查得知,购买3量男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种
19、购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【答案】(1)男式单车2000元/辆,女式单车1500元/辆;(2)该社区共有4种购置方案,其中购置男式单得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m的范围可得其最值情况试题解析:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9m12,m为整数,m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022年收藏的精品资料专题15 应用题第06期中考数学试题分项版解析汇编解析版 2021 2022 收藏 精品 资料 专题 15 应用题 06 期中 数学试题 分项版 解析 汇编
链接地址:https://www.taowenge.com/p-32477297.html
限制150内