《九年级数学下册期中测试题北师大版含答案解析.doc》由会员分享,可在线阅读,更多相关《九年级数学下册期中测试题北师大版含答案解析.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、实用精品文献资料分享2017年九年级数学下册期中测试题(北师大版含答案解析)期中检测题 (时间:100分钟满分:120分) 一、精心选一选(每小题3分,共30分) 1(2016随州)在ABC中,C90,若cosB32,则sinA的值为(B) A.3 B.32 C.33 D.12 2下列关于抛物线yx22x1的说法中,正确的是(D) A开口向下 B对称轴为直线x1 C与x轴有两个交点 D顶点坐标是(1,0) 3若为锐角且tan3,则tan(90)等于(C) A.1010 B3 C.13 D.103 4将二次函数yx2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是(A) Ay
2、(x1)22 By(x1)22 Cy(x1)22 Dy(x1)22 5已知一次函数yaxc与二次函数yax2bxc,它们在同一坐标系内的大致图象是(C) 6已知一元二次方程x2bx30的一根为3,在二次函数yx2bx3的图象上有三点(45,y1),(54,y2),(16,y2),y1,y2,y3的大小关系是(A) Ay1y2y3 By2y1y3 Cy3y1y2 Dy1y2y3 7如图,机器人从A点出发,沿着西南方向行了4个单位,到达B点后观察到原点O在它的南偏东60的方向上,则原来点A的坐标为(A) A(0,22236) B(0,22) C(0,236) D(0,3) 8小敏在某次投篮中,球的
3、运动路线是抛物线y15x23.5的一部分如图所示,若命中篮圈中心,则他与篮圈中心的水平距离l是(C) A4.6 m B4.5 m C4 m D3.5 m 9一人乘雪橇沿坡比13的斜坡笔直滑下,滑下的距离s(m)与时间t(s)间的关系为s10t2t2,若滑到坡底的时间为4s,则此人下降的高度为(C) A72 m B363 m C36 m D183 m 10(2015嘉兴)如图,抛物线yx22xm1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D.下列四个判断:当x0时,y0;若a1,则b4;抛物线上有两点P(x1,y1)和Q(x2,y2),若x11x2,且x1x22,则y1y
4、2;点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m2时,四边形EDFG周长的最小值为62.其中正确判断的序号是(C) A B C D 二、细心填一填(每小题3分,共24分) 11在ABC中,ACBCAB345,则sinAsinB_75_ 12(2015怀化)二次函数yx22x的顶点坐标为_(1,1)_,对称轴是_直线x1_ 13ABC中,锐角A,B满足(sinA32)2|tanB3|0,则ABC是_等边三角形_ 14抛物线yx2(2m1)x2m与x轴的两个交点坐标分别为A(x1,0),B(x2,0),且x1x21,则m的值为_12_ 15(2015东营)4月26日,2015
5、黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播,如图,在直升机的镜头下,观察马拉松景观大道A处的俯角为30,B处的俯角为45,如果此时直升机镜头C处的高度CD为200米,点A,D,B在同一直线上,则AB两点的距离是_200(31)_米 ,第15题图) ,第16题图) ,第17题图) ,第18题图) 16(2015江西)如图是小志同学书桌上的一个电子相框,将其侧面抽象为如图所示的几何图形,已知BCBD15 cm,CBD40,则点B到CD的距离为_14.1_cm.(参考数据:sin200.342,cos200.940,sin400.643,cos400.766,计
6、算结果精确到0.1 cm,可用科学计算器) 17如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶,它的拱宽AB为4 m,拱高CO为0.8 m如图建立坐标系,则模板的轮廓线所在的抛物线的表达式为_y0.2x2_ 18(2016河南模拟)如图,抛物线的顶点为P(2,2),与y轴交于点A(0,3),若平移该抛物线使其顶点P沿直线移动到点P(2,2),点A的对应点为A,则抛物线上PA所扫过的区域(阴影部分)的面积为_12_ 三、用心做一做(共66分) 19(8分)(1)(2)012tan60(13)2;(2)(1tan60)24cos30. 解:103 解:1320.(8分)如图,AB
7、C中,ADBC,垂足是D,若BC14,AD12,tanBAD34,求sinC的值 解:在RtABD中,tanBADBDAD34,BDADtanBAD12349,CDBCBD1495.ACAD2CD213,sinCADAC121321(8分)已知锐角关于x的一元二次方程x22xsin3sin340有相等的实数根,求. 解:关于x的一元二次方程x22xsin3sina340有相等实数根,0,即(2sin)24(3sin34)4sin243sin30,sin32,6022(10分)如图,抛物线yx2bxc经过坐标原点,且与x轴交于点A(2,0) (1)求此抛物线的表达式及顶点B的坐标; (2)在抛物
8、线上有一点P,满足SAOP3,请直接写出点P的坐标 解:(1)将A,O两点的坐标代入表达式yx2bxc,得c0,42bc0,解得b2,c0.此抛物线的表达式为yx22x,变化形式得y(x1)21,顶点B的坐标为(1,1)(2)P1(3,3),P2(1,3)23(8分)如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救已知C处位于A处的北偏东45的方向上,港口A位于B的北偏西30的方向上,求A,C之间的距离(结果精确到0.1海里,参考数据:21.41,31.73) 解:作AHBC,设AHx,则CHx,BH3x,由x3x20
9、,解得x7.3,在RtAHC中,AC2AH10.3,AC10.3海里24.(12分)(2016湖州模拟)某农庄计划在30亩(1亩666.7平方米)空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数关系如图所示;小李种植水果所得报酬z(元)与种植面积n(亩)之间的函数关系如图所示 (1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是_140_元,小张应得的工资总额是_2_800_元;此时,小李种植水果_10_亩,小李应得的报酬是_1_500_元 (2)当10n30时,求z与n之间的函数关系式; (3)设农庄支付给小
10、张和小李的总费用为W(元),当10m30时,求W与m之间的函数关系式 解:(2)当10n30时,z关于n的函数图象经过点(10,1 500),(30,3 900),设zknb,则10kb1 500,30kb3 900,解得k120,b300,z120n300(10n30)(3)当10m30时,y2m180,mn30,又当0n10时,z150n;当10n20时,z120n300.当10m20时,10n20,Wm(2m180)120n300m(2m180)120(30m)3002m260m3 900;当20m30时,0n10,Wm(2m180)150nm(2m180)150(30m)2m230m4
11、 500.W与m之间的函数关系式为W2m260m3 900(10m20),2m230m4 500(20m30)25(12分)(2016北京模拟)在平面直角坐标系xOy中,抛物线ymx22mx2(m0)与y轴交于点A,其对称轴与x轴交于点B. (1)求点A,B的坐标; (2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的表达式; (3)若该抛物线在2x1这一段位于直线l的上方,并且在2x3这一段位于直线AB的下方,求该抛物线的表达式 解: (1)当x0时,y2.点A的坐标为(0,2)将ymx22mx2配方,得ym(x1)2m2.抛物线的对称轴为直线x1.点B的坐标为(1,0)(2)由题意,点A关于直线x1的对称点的坐标为(2,2)设直线l的表达式为ykxb.点(1,0)和(2,2)在直线l上,0kb,22kb,解得k2,b2.直线l的表达式为y2x2(3)由题意可知,抛物线关于直线x1对称,直线AB与直线l也关于直线x1对称抛物线在2x3这一段位于直线AB的下方,抛物线在1x0这一段位于直线l的下方又抛物线在2x1这一段位于直线l的上方,抛物线与直线l的一个交点的横坐标为1.由直线l的表达式y2x2可得这个点的坐标为(1,4)抛物线ymx22mx2经过点(1,4),m2.所求抛物线的表达式为y2x24x2
限制150内