【五年经典推荐 全程方略】2022届高三数学 专项精析精炼 2022年考点3函数的概念及性质 .doc
《【五年经典推荐 全程方略】2022届高三数学 专项精析精炼 2022年考点3函数的概念及性质 .doc》由会员分享,可在线阅读,更多相关《【五年经典推荐 全程方略】2022届高三数学 专项精析精炼 2022年考点3函数的概念及性质 .doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、考点3 函数的概念及性质 1.(2010陕西高考理科5)已知函数若=4,则实数=( )(A) (B) (C) 2 (D) 9【命题立意】本题考查分段函数的函数值问题,考查考生思维的逻辑性.【思路点拨】.【规范解答】选C. 因为所以2.(2010广东高考文科3)若函数f(x)=+与g(x)=的定义域均为R,则( )(A)f(x)与g(x)均为偶函数 (B)f(x)为奇函数,g(x)为偶函数(C)f(x)与g(x)均为奇函数 (D)f(x)为偶函数,g(x)为奇函数【命题立意】本题考查函数奇偶性的定义及判定.【思路点拨】 因为定义域均为R,所以只需研究与的关系和与的关系即可判断.【规范解答】选D.
2、, , 故选D.3.(2010广东高考理科3)若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( )(A)f(x)与g(x)均为偶函数 (B) f(x)为偶函数,g(x)为奇函数(C)f(x)与g(x)均为奇函数 (D) f(x)为奇函数,g(x)为偶函数【命题立意】本题考查函数奇偶性的定义及判定.【思路点拨】 因为定义域均为R,所以只需研究与的关系和与的关系即可判断.【规范解答】选.,故选.4.(2010安徽高考理科4)若是上周期为5的奇函数,且满足,则( )(A)1(B)1(C)2(D)2【命题立意】本题主要考查函数的奇偶性、周期性,考查考生的化归转化能力.【思路点拨
3、】是上周期为5的奇函数求.【规范解答】选A.由题意,故A正确.5.(2010 海南高考理科T8)设偶函数满足,则( )(A) (B)(C) (D)【命题立意】本题主要考查了函数的奇偶性和单调性的综合应用.【思路点拨】利用函数的奇偶性画出函数的简图,然后再利用对称性和单调性列出相关不等式求解.【规范解答】选.因为函数在上为增函数,且,由偶函数的性质可知,若,需满足,得或,故选.6.(2010山东高考文科5)设f(x)为定义在R上的奇函数,当x0时,f(x)=+2x+b(b为常数),则f(-1)= ( )(A) -3 (B) -1 (C) 1 (D) 3【命题立意】本题考查函数的奇偶性, 考查考生
4、的推理论证能力和运算求解能力.【思路点拨】先根据奇函数的性质求出b的值,再求出,最后根据与的关系求出.【规范解答】 选A.因为为定义在R上的奇函数,所以有,解得,所以当时, ,即,故选A.7.(2010山东高考理科4)设f(x)为定义在R上的奇函数,当x0时,f(x)=+2x+b(b为常数),则f(-1)= ( )(A) 3 (B) 1 (C)-1 (D)-3【命题立意】本题考查函数的奇偶性, 考查考生的推理论证能力和运算求解能力. 【思路点拨】先根据奇函数的性质求出b的值,再求出,最后根据与的关系求出.【规范解答】 选D.因为为定义在R上的奇函数,所以有,解得,所以当时, ,即,故选D. 8
5、.(2010天津高考文科0)设函数,则的值域是( )(A) (B) (C) (D)【命题立意】考查函数的图像与性质及数形结合的思想.【思路点拨】先根据特设求分段函数中各段的x的范围,再求函数的值域.【规范解答】选D.由可得,由,即时,如图,由得图像可得:当时,2,当时,所以的值域为,故选D.9. (2010湖南高考理科4)用表示a,b两数中的最小值.若函数的图象关于直线x=对称,则t的值为( )(A)-2 (B)2 (C)-1 (D)1【命题立意】以新定义为出发点考查学生的接受能力,以分段函数为依托,以函数图象为明线,以函数对称性为暗线,考查学生综合运用知识的能力.同时也考查了学生避繁就简快速
6、捕捉信息的能力.【思路点拨】根据题意写出分段函数,作出已知函数y=|x|的图象,再平移y=|x+t|的图象使得整个函数的图象关于直线x=-对称.【规范解答】选D.由定义得到分段函数,作出函数y=|x|在R上的图象,由于函数y=|x+t|的图象是由y=|x|的图象平行移动而得到,向右移动显然不满足条件关于x=-对称,因此向左移动,移动到两个函数的交点为(-,),把点(-,)代入y=|x+t|得到t=0或t=1,t=0显然不成立,因此t=1.【方法技巧】一个函数有多段,或者是多个函数的图象的处理,常常先定后动,先曲后直.10.(2010陕西高考文科3)已知函数f(x)若f(f(0)4a,则实数a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 五年经典推荐 全程方略 【五年经典推荐 全程方略】2022届高三数学 专项精析精炼 2022年考点3 函数的概念及
链接地址:https://www.taowenge.com/p-32495407.html
限制150内