2022秋九年级数学上册第24章一元一次方程24.2解一元二次方程4公式法__公式法解方程教案新版冀教版.doc
《2022秋九年级数学上册第24章一元一次方程24.2解一元二次方程4公式法__公式法解方程教案新版冀教版.doc》由会员分享,可在线阅读,更多相关《2022秋九年级数学上册第24章一元一次方程24.2解一元二次方程4公式法__公式法解方程教案新版冀教版.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、公式法公式法解方程教学内容 1一元二次方程求根公式的推导过程; 2公式法的概念; 3利用公式法解一元二次方程教学目标知识与技能理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程过程与方法复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a0)的求根公式的推导公式,并应用公式法解一元二次方程重难点 1重点:求根公式的推导和公式法的应用 2难点:一元二次方程求根公式法的推导教学过程一、复习引入(学生活动)用配方法解下列方程(1)6x2-7x+1=0 (2)4x2-3x=52(老师点评)(1)移项,得:6x2-7x=-1二次项系数化为1,得:x2
2、-x=-配方,得:x2-x+()2=-+()2(x-)2=x-=x1=+=1 x2=-+=(2)略总结用配方法解一元二次方程的步骤(学生总结,老师点评)(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解二、探索新知如果这个一元二次方程是一般形式ax2+bx+c=0(a0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题问题:已知ax2+bx+c=0(a0)且b2-4ac0,试推导它的两个根x1=,x2=分析:因为前面
3、具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去解:移项,得:ax2+bx=-c二次项系数化为1,得x2+x=-配方,得:x2+x+()2=-+()2即(x+)2=b2-4ac0且4a200直接开平方,得:x+=即x=x1=,x2=由上可知,一元二次方程ax2+bx+c=0(a0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac0时,将a、b、c代入式子x=就得到方程的根(2)这个式子叫做一元二次方程的求根公式(3)利用求根公式解一元二次方程的方法叫公式法(4)由求根公式可
4、知,一元二次方程最多有两个实数根例1用公式法解下列方程(1)2x2-4x-1=0 (2)5x+2=3x2(3)(x-2)(3x-5)=0 (4)4x2-3x+1=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可解:(1)a=2,b=-4,c=-1 b2-4ac=(-4)2-42(-1)=240 x=x1=,x2=(2)将方程化为一般形式 3x2-5x-2=0 a=3,b=-5,c=-2b2-4ac=(-5)2-43(-2)=490 x=x1=2,x2=-(3)将方程化为一般形式 3x2-11x+9=0 a=3,b=-11,c=9b2-4ac=(-11)2-439=130
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 九年级 数学 上册 24 一元一次方程 24.2 一元 二次方程 公式 _ 方程 教案 新版 冀教版
链接地址:https://www.taowenge.com/p-32496759.html
限制150内