实变函数与泛函分析基础第二版 程其襄第11章课后习题答案.doc
《实变函数与泛函分析基础第二版 程其襄第11章课后习题答案.doc》由会员分享,可在线阅读,更多相关《实变函数与泛函分析基础第二版 程其襄第11章课后习题答案.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十一章 线性算子的谱1 设。证明,且其中没有特征值。证明 当时,常值函数1不在的值域中,因此不是满射,这样。反之若,定义算子。则由于,且因此是C0,1中有界线性算子。易验证,所以。总之, 若,则对任意,可推得。由于,必有,所以A无特征值。证毕。2 设,证明。证明 对任意。因为常值函数1不在的值域中,因此。这样。反之,若,定义。类似第1题可证是有界线性算子,且。即。因此。证毕。3 设, 试求。解 对任意,若,定义,显然,因此的点都是A的点谱,由于是闭集,则。对任意,显然,因此,所以。这样我们就证明了。4 设F是平面上无限有界闭集,是F的一稠密子集,在中定义算子T:则都是特征值,中每个点是T的连
2、续谱。证明 对任意n,其中1在第n个坐标上。由题设,因此是T的特征值。又由于是闭集,所以。若,则。定义算子,若,易验证,且。因此。若,且,使。则对任意n,。由于,则,。这样x=0,因此不是特征值,而是连续谱。证毕。5 设为线性算子的特征值,则的n次根中至少有一个是算子A的特征值。证明 设是的特征值,的n次根为。存在,使,则。若,则就是A的特征值,否则必有某i,而,则是A的特征值。证毕。6 设A为Banach空间X上的有界线性算子,又设为X上一列有界线性算子,且,证明当n充分大后,也以为正则点。证明 。当n充分大时,这样 是可逆的。此可逆性由本章2定理1可证,又也是可逆的。因此当n充分大后,也可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实变函数与泛函分析基础第二版 程其襄 第11章课后习题答案 函数 分析 基础 第二 11 课后 习题 答案
限制150内