2022年最新高中数学导数知识点归纳总结 .pdf
《2022年最新高中数学导数知识点归纳总结 .pdf》由会员分享,可在线阅读,更多相关《2022年最新高中数学导数知识点归纳总结 .pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档精品文档核心出品必属精品免费下载导 数考试内容:导数的背影导数的概念多项式函数的导数利用导数研究函数的单调性和极值函数的最大值和最小值考试要求: (1)了解导数概念的某些实际背景(2)理解导数的几何意义(3)掌握函数, y=c(c 为常数 )、y=xn(nN+)的导数公式, 会求多项式函数的导数( 4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值(5)会利用导数求某些简单实际问题的最大值和最小值 14. 导 数知识要点1. 导数(导函数的简称)的定义: 设0 x是函数)(xfy定义域的一点, 如果自变量x在0 x处
2、有 增 量x , 则 函 数 值y 也 引 起 相 应 的 增 量)()(00 xfxxfy; 比 值xxfxxfxy)()(00称为函数)(xfy在点0 x到xx0之间的平均变化率;如果极限xxfxxfxyxx)()(limlim0000存在,则称函数)(xfy在点0 x处可导, 并把这个极限叫做导数导数的概念导数的运算导数的应用导数的几何意义、 物理意义函数的单调性函数的极值函数的最值常见函数的导数导数的运算法则名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 4 页
3、- - - - - - - - - 精品文档精品文档)(xfy在0 x处的导数, 记作)(0 xf或0|xxy,即)(0 xf=xxfxxfxyxx)()(limlim0000. 注:x是增量,我们也称为“ 改变量 ” ,因为x 可正,可负,但不为零. 以知函数)(xfy定义域为 A,)(xfy的定义域为B ,则 A与 B 关系为BA. 2. 函数)(xfy在点0 x处连续与点0 x处可导的关系:函数)(xfy在点0 x处连续是)(xfy在点0 x处可导的必要不充分条件. 可以证明,如果)(xfy在点0 x处可导,那么)(xfy点0 x处连续 . 事实上,令xxx0,则0 xx相当于0 x.
4、于是)()()(lim)(lim)(lim0000000 xfxfxxfxxfxfxxxx).()(0)()(limlim)()(lim)()()(lim0000000000000 xfxfxfxfxxfxxfxfxxxfxxfxxxx如果)(xfy点0 x处连续,那么)(xfy在点0 x处可导,是不成立的. 例:|)(xxf在点00 x处连续,但在点00 x处不可导,因为xxxy|,当x0 时,1xy;当x 0 时,1xy,故xyx0lim不存在 . 注:可导的奇函数函数其导函数为偶函数. 可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义:函数)(xfy在点0 x处的导数的几何意义就
5、是曲线)(xfy在点)(,(0 xfx处的切线的斜率,也 就 是 说 , 曲 线)(xfy在 点 P)(,(0 xfx处 的 切 线 的 斜 率 是)(0 xf, 切 线 方 程 为).)(00 xxxfyy4. 求导数的四则运算法则:)(vuvu)(.)()()(.)()(2121xfxfxfyxfxfxfynn)()(cvcvvccvuvvuuv(c为常数))0(2vvuvvuvu注:vu,必须是可导函数. 若两个函数可导,则它们和、 差、积、商必可导; 若两个函数均不可导,则它们的和、 差、积、商不一定不可导. 例如:设xxxf2sin2)(,xxxg2cos)(,则)(),(xgxf在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年最新高中数学导数知识点归纳总结 2022 最新 高中数学 导数 知识点 归纳 总结
限制150内