2022年最新2022年沪科版九年级数学下册期末专项攻克-B卷(含详解).docx
《2022年最新2022年沪科版九年级数学下册期末专项攻克-B卷(含详解).docx》由会员分享,可在线阅读,更多相关《2022年最新2022年沪科版九年级数学下册期末专项攻克-B卷(含详解).docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年沪科版九年级数学下册期末专项攻克 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面是由一些完全相同的小立方块搭成的几何体从三个方向看到的形
2、状图搭成这个几何体所用的小立方块的个数是( )A个B个C个D个2、下列事件是随机事件的是( )A抛出的篮球会下落B经过有交通信号灯的路口,遇到红灯C任意画一个三角形,其内角和是D400人中有两人的生日在同一天3、下列事件中,是必然事件的是( )A刚到车站,恰好有车进站B在一个仅装着白乒乓球的盒子中,摸出黄乒乓球C打开九年级上册数学教材,恰好是概率初步的内容D任意画一个三角形,其外角和是3604、如图,该几何体的左视图是( )ABCD5、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的
3、频率稳定在0.4左右,则a的值约为( )A10B12C15D186、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定7、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是( )ABCD8、如图,AB为的直径,劣弧BC的长是劣弧BD长的2倍,则AC的长为( ) 线 封 密 内 号学级年名姓 线 封 密 外 ABC3D9、如图,是的直径,弦,垂足为,若,则( )A5B8C9D1010、在中,cm,cm以C为圆心,r为半径的与直线AB相切则r的取值正确的是( )A2cmB2.4cmC3cmD3.5cm第卷(非选择题 70分)二、填
4、空题(5小题,每小题4分,共计20分)1、若扇形的圆心角为60,半径为2,则该扇形的弧长是_(结果保留)2、已知如图,AB=8,AC=4,BAC=60,BC所在圆的圆心是点O,BOC=60,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为_3、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是_4、如图AB为O的直径,点P为AB延长线上的点,过点P作O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是_(写所有正确论的号)AM平分CAB;若AB=4,APE=30,则的长为;若AC=3BD,则有ta
5、nMAP=5、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_三、解答题(5小题,每小题10分,共计50分) 线 封 密 内 号学级年名姓 线 封 密 外 1、如图,是由一些大小相同的小正方体组合成的简单几同体,请在下面方格纸中分别画出从它的左面和上面看到的形状图2、将锐角为45的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF(1)在三角
6、板旋转过程中,当MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;(2)在三角板旋转过程中,当MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;(3)若正方形的边长为4,在三角板旋转过程中,当MPN的一边恰好经过BC边的中点时,试求线段EF的长3、在中,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90得到线段AF,连接BF,与直线AD交于点G(1)如图,当点E在线段CD上时,依题意补全图形,并直接写出BC与C
7、F的位置关系;求证:点G为BF的中点(2)直接写出AE,BE,AG之间的数量关系4、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F(1)如图,当点P在线段AB上运动时,若DBE30,PB2,求DE的长;(2)当点P在射线AB上运动时,试探求线段AB,PB,PF之间的数量关系,并给出证明5、如图,四边形ABCD是正方形ABE是等边三角形,M为对角线 BD(不含B,D点)上任意一点,将线段BM绕点B逆时针旋转60得到BN,连接 EN,AM、CM请判断线段 AM 和线段 EN 的数
8、量关系,并说明理由 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、D【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数【详解】解:综合主视图,俯视图,左视图,底层有5个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是6,故选D【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案2、B【分析】根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可【详解】A.抛出的篮
9、球会下落是必然事件,故此选项不符合题意;B.经过有交通信号灯的路口,遇到红灯是随机事件,故此选项符合题意; C.任意画一个三角形,其内角和是是不可能事件,故此选项不符合题意;D. 400人中有两人的生日在同一天是必然事件,故此选项不符合题意;故选B【点睛】此题主要考查了事件的确定性和不确定性,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件3、D【分析】根据必然事件的概念“在一定条件下,有些事件必然会发生,这样的事件称为必然事件”可判断选项D是必然事件;根据不可能事件的概念“有些事件必然不会发生,这样的事件称为不可能事件”可判断选
10、项B是不可能事件;根据随机事件的概念“在一定条件下,可能发生也可能不发生的事件,称为随机事件”判断选项A、C是随机事件,即可得【详解】解:A、刚到车站,恰好有车进站是随机事件;B、在一个仅装着白乒乓球的盒子中,摸出黄乒乓球是不可能事件;C、打开九年级上册数学教材,恰好是概率初步的内容是随机事件;D、任意画一个三角形,其外角和是360是必然事件;故选D【点睛】本题考查了必然事件,解题的关键是熟记必然事件的概念,不可能事件的概念和随机事件的概念4、C【分析】根据从左边看得到的图形是左视图解答即可【详解】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确故选C【点睛】 线 封
11、 密 内 号学级年名姓 线 封 密 外 本题主要考查了简单组合体的三视图,掌握三视图的定义成为解答本题的关键5、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.4左右得到比例关系,列出方程求解即可【详解】解:由题意可得,解得,a=15经检验,a=15是原方程的解故选:C【点睛】本题利用了用大量试验得到的频率可以估计事件的概率关键是根据白球的频率得到相应的等量关系6、C【分析】根据O的半径r=4,且点A到圆心O的距离d=5知dr,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,dr,点A在O外,故选:C【点睛】本题主
12、要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr7、D【分析】根据随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),进行计算即可【详解】解:一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,抽到每个球的可能性相同,布袋中任意摸出1个球,共有5种可能,摸到白球可能的次数为2次,摸到白球的概率是,P(白球)故选:D【点睛】本题考查了随机事件概率的求法,熟练掌握随机事件概率公式是解题关键8、D【分析】连接,根据求得半径,进而
13、根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接, 线 封 密 内 号学级年名姓 线 封 密 外 ,是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键9、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接,是的直径,弦,设的半径为,则在中,即解得即故选C【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形
14、是解答此题的关键10、B【分析】如图所示,过C作CDAB,交AB于点D,在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,利用面积法求出CD的长,即为所求的r【详解】解:如图所示,过C作CDAB,交AB于点D,在RtABC中,AC=3cm,BC=4cm,根据勾股定理得:AB=5(cm),SABC=BCAC=ABCD,34=10CD,解得:CD=2.4,则r=2.4(cm)故选:B【点睛】此题考查了切线的性质,勾股定理,以及三角形面积求法,熟练掌握切线的性质是解本题的关键二、填空题1、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算【详解】解:依题意,n=,r=2,扇形的弧
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 年沪科版 九年级 数学 下册 期末 专项 攻克 详解
限制150内