《2022年最新人教版九年级数学下册第二十七章-相似专项测评试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版九年级数学下册第二十七章-相似专项测评试题(含解析).docx(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十七章-相似专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、根据下列条件,判断ABC与ABC能相似的条件有()CC90,A25,B65;C90,AC6cm,BC4cm,AC
2、9cm,BC6cm;AB10cm,BC12cm,AC15cm,AB150cm,BC180cm,AC225cm;ABC与ABC是有一个角为80等腰三角形A1对B2对C3对D4对2、如图,以点O为位似中心,将ABC缩小后得到ABC,已知BB2OB,则ABC与ABC的面积之比()A1:3B1:4C1:5D1:93、如图,在ABCD中,对角线AC,BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F,若AB4,BC6,CE1,则CF的长为()AB1.5CD14、如图,在平行四边形ABCD中,点E是边AD上的一点,且AE2ED,EC交对角线BD于点F,则( )A6B18C4D95、如图,在平面
3、直角坐标中,平行四边形ABCD与y轴分别交于E、F两点,对角线BD在x轴上,反比例函数y(k0)的图象过点A并交AD于点G,连接DF若BE:AE1:2,AG:GD3:2,且FCD的面积为,则k的值是()AB3CD56、若两个等腰直角三角形斜边的比是1:3,则它们的面积比是()A1:4B1:6C1:9D1:107、如图的两个四边形相似,则a的度数是( )A120B87C75D608、某校开展“展青春风采,树强国信念”科普阅读活动小明看到黄金分割比是一种数学上的比例关系,它具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,应用时一般取0.618特别奇妙的是在正五边形中,如图所示,连接顶点AB
4、,AC,的平分线交边AB于点D,则点D就是线段AB的一个黄金分割点,即,已知,那么该正五边形的周长为( )A191cmB25cmC309cmD40cm9、如图,在边长为2的正方形ABCD中,已知BE1,将ABE沿AE折叠,点G与点B对应,连结BG并延长交CD于点F,则GF的长为()ABCD10、如图,BC2,则AB的长为( )A6B5C4D3第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,C90,ADBD,CE2BE,过点B作BFCD交AE的延长线于点F,当BF1时,AB的长为 _2、已知线段AB4cm,C是AB的黄金分割点,且ACBC,则AC_3
5、、一块材料形状是RtABC,C=90量得边AC=6cm,AB =10cm,用它来加工一个正方形零件,使正方形的至少一边在RtABC的边上,其余顶点在其它边上,则这个正方形零件的边长为:_4、如果两个相似三角形对应高的比为6,那么这两个三角形的相似比是_5、如图,点C是线段AB的黄金分割点(ACBC),如果分别以点C、B为圆心,以AC的长为半径作弧相交于点D,那么B的度数是_三、解答题(5小题,每小题10分,共计50分)1、如图,ABC中,C90,AC4cm,BC3cm,动点P从点B出发以1cm/s速度向点C移动,同时动点Q从C出发以2cm/s的速度向点A移动,其中一个点到终点另一个点也随之停止
6、设它们的运动时间为t(1)根据题意知:CQ ,CP ;(用含t的代数式表示);(2)运动几秒时,CPQ与CBA相似?2、如图,RtABC中,ACB90,AC4cm,BC3cm,以AC为边向右作正方形ACDE,点P从点C出发,沿射线CD以1cm/s的速度向右运动,过点P作直线l与射线BA交于点Q,使得BPQB,设运动时间为t(s),BPQ与正方形ACDE重合部分的面积为S(cm2)(1)当直线l经过点E时,t的值为 (2)求S关于t的函数关系式,并直接写出自变量t的取值范围3、如图,在正方形ABCD中,F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC
7、相交于点H,连接DG(1)若,则的度数为 ;(2)求证:GDACCFCD4、定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”如图1,ABC中,点D是BC边上一点,连接AD,若AD2BDCD,则称点D是ABC中BC边上的“好点”(1)如图2,ABC的顶点是44网格图的格点,请在图中画出AB边上的“好点”;(2)如图3,ABC是O的内接三角形,点H在AB上,连接CH并延长交O于点D若点H是BCD中CD边上的“好点”求证:OHAB;若OHBD,O的半径为r,且r3OH,求的值5、如图,ABC的边AB为O的直径,BC与圆交于
8、点D,D为BC的中点,过D作DEAC于E(1)求证:DE为O的切线;(2)若AB13,CD5,求CE的长-参考答案-一、单选题1、C【解析】【分析】根据相似三角形常用的判定方法对各个选项进行分析从而得到答案【详解】解:(1)CC90,A25B65CC,BB(2)C90,AC6cm,BC4cm, ,AC9,BC6,(3)AB10cm,BC12cm,AC15cm,AB150cm,BC180cm,AC225cm;(4)没有指明80的角是顶角还是底角无法判定两三角形相似共有3对故选:C【点睛】此题主要考查相似三角形的判定方法:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组
9、对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似2、D【解析】【分析】直接根据题意得出位似比,根据位似比等于相似比,进而根据面积比等于相似比的平方求得面积比【详解】解答:解:以点O为位似中心,将ABC缩小后得到ABC,BB2OB,OBOB,ABC与ABC的面积之比为:1:9故选:D【点睛】此题主要考查了位似图形的性质,正确得出位似比是解题关键3、D【解析】【分析】过O作OMBC交CD于M,根据平行四边形的性质得到BODO,CDAB4,ADBC6,根据三角形的中位线的性质得到CMCD2,OMBC3,通过CFEMOE,根据相似三角形的性质得到,代入数据即
10、可得到结论【详解】解:过O作OMBC交CD于M,在ABCD中,BODO,CDAB4,ADBC6,CMCD2,OMBC3,OMCF,CFEMOE,即,CF1故选:D【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识解此题的关键是准确作出辅助线,合理应用数形结合思想解题4、B【解析】【分析】先求解,再利用平行四边形的性质证明,得到,再利用相似三角形面积比等于相似比的平方得出两个三角形的面积关系可得答案【详解】解:AE=2ED,AD=AE+DE=3DE, ,四边形ABCD为平行四边形, ADBC,BC=AD, DEF=BCF,EDF=CBF, , , 故选:B【点睛】本题主要考查了相似
11、三角形的判定与性质,平行四边形的性质,相似两个三角形的面积之间的关系,掌握以上知识是解题的关键5、B【解析】【分析】过点A作AMx轴于点M,GNx轴于点N,设点 ,则AM=b,OM=a,可得DGNDAM, ,再由BE:AE1:2,AG:GD3:2,可得到, ,从而得到 ,进而得到 ,继而,再由平行四边形的性质,可得BOFDNG,从而得到 ,再由,即可求解【详解】解:如图,过点A作AMx轴于点M,GNx轴于点N,设点 ,则AM=b,OM=a,AMNG,AMy轴,DGNDAM, , ,BE:AE1:2,AG:GD3:2, , , , ,点A、G在反比例函数y(k0)的图象上, , , , , ,四
12、边形ABCD是平行四边形,OBF=GDN,BOF=GND=90,BOFDNG, ,即, , , ,解得: , 故选:B【点睛】本题主要考查了相似三角形的性质和判定,反比例函数的几何意义,平行四边形的性质,熟练掌握相关知识点是解题的关键6、C【解析】【分析】根据相似三角形的判定与性质即可得出答案【详解】解:如图,ABC与DEF都为等腰直角三角形,且EF:AB1:3,则ABCEFD,故选:C【点睛】本题主要考查了等腰直角三角形的性质,相似三角形的判定与性质等知识,熟练掌握相似三角形的性质是解题的关键7、B【解析】【分析】根据相似多边形的性质,可得 ,再根据四边形的内角和等于360,即可求解【详解】
13、解:如图,两个四边形相似, ,两个四边形相似,且四边形的内角和等于360, 故选:B【点睛】本题主要考查了相似多边形的性质,多边形的内角和,熟练掌握相似多边形的对应边成比例,对应角相等是解题的关键8、C【解析】【分析】根据正五边形各边相等,各内角相等,得到 ,得到 ,再根据求出AD即可求解 【详解】解:正五边形每个内角 ,每条边相等, , , , , ,DC为ACB的平分线, , , , , , , , ,该五边形周长 ,故选:C【点睛】本题考查正多边形的性质,三角形全等的判定与性质,黄金比例,通过全等求出正五边形边长是解题关键9、B【解析】【分析】如图所示:设BF与AE相交于M,先证明EBM
14、BAE,即可利用ASA证明RtABERtBCF得到CFBE1,从而求出,然后证明EBMFBC,得到 ,即 ,求出 ,即可得到BG2BM,即可得到FGBFBG3 【详解】解:如图所示:设BF与AE相交于M,四边形ABCD是正方形,ABBC,ABCBCD90,ABE沿AE折叠得到AGE,AE是线段BG的垂直平分线,EMB90,EBM+BEM90,BAE+BEM90,EBMBAE,在RtABE和RtBCF中,RtABERtBCF(ASA),CFBE1,又EBMFBC,BMEBCF,EBMFBC,即,BG2BM,FGBFBG3,故选B【点睛】本题主要考查了正方形的性质,折叠的性质,全等三角形的性质与判
15、定,相似三角形的性质与判定,勾股定理等等,熟练掌握相似三角形的性质与判定条件是解题的关键10、C【解析】【分析】由平行线分线段成比例,可得比例式:,代入值,利用线段间的关系,直接求解答案【详解】解:且, , , 故选:C【点睛】本题主要是考查了平行线分线段成比例,正确找到对应边长的比例式,是求解这类问题的关键二、填空题1、5【解析】【分析】证明,可得,可求得,由平行线分线段成比例可求OD的长,再根据直角三角形斜边上的中线求出CD,即可求解【详解】解:如图,CD交AF于点O,且且故答案为:5【点睛】本题考查相似三角形的判定与性质、直角三角形的性质等知识,是重要考点,掌握相关知识是解题关机键2、#
16、【解析】【分析】根据黄金分割点的定义,知AC是较长线段;所以ACAB,代入数据即可得出AC的长度【详解】解:由于C为线段AB4的黄金分割点,且ACBC,则ACAB422故答案为:2-2【点睛】本题考查了黄金分割问题,理解黄金分割点的概念要求熟记黄金比的值3、或【解析】【分析】分正方形的边长在直角边上和斜边上两种情况讨论,根据相似三角形的性质与判定即可求得正方形的边长【详解】解:RtABC,C=90,AC=6cm,AB =10cm,如图,设正方形的边长为,则 四边形是正方形,即解得(2)如图,设正方形的边长为四边形是正方形,在上即四边形是正方形,又又, 即即解得综上所述,正方形的边长为:或故答案
17、为:或【点睛】本题考查了正方形的性质,勾股定理,相似三角形的性质与判定,分类讨论是解题的关键4、6【解析】【分析】相似三角形的一切对应线段(包括对应高)的比等于相似比,由此可求得这两相似三角形的相似比【详解】解:两个相似三角形对应高的比为6,它们的相似比为6,故答案是:6【点睛】本题主要考查的是相似三角形的性质,解题的关键是掌握相似三角形一切对应线段(包括对应边、对应高、对应中线、对应角平分线等)的比等于相似比5、72【解析】【分析】根据黄金分割的定义得到AC2=BCAB,而AC=CD=BD,则BD2=BCAB,根据相似三角形的判定得BDCBAD,则A=BDC,设A=x,则BDC=x,根据三角
18、形外角性质得ADC=A=2x,然后根据三角形内角和定理得到x+2x+2x =180,再解方程即可【详解】解:点C是线段AB的一个黄金分割点,AC2=BCAB,CD=AC=BD,BD2=BCAB,即BD:BC=AB:BD,而ABD=DBC,BDCBAD,A=BDC,设A=x,则ADC=x,DCB=ADC+A=2x,而CD=BD,DCB=B=2x,x+2x+2x=180,解得x=36, 故答案为:72【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点三、解答题1、
19、(1)2t;3-t;(2)或911秒【解析】【分析】(1)结合题意,直接得出答案即可;(2)设经过t秒后两三角形相似,则可分下列两种情况进行求解:若CPQCBA,若CPQCAB,然后列方程求解【详解】解:(1)经过t秒后,CQ=2t,CP=BC-BP=3-t ;(2)设经过t秒后两三角形相似,则可分下列两种情况进行求解,若CPQCBA,则CPCB=CQCA ,即3-t3=2t4 ,解得:t=65s,若CPQCAB,则CPCA=CQCB,即3-t4=2t3,解得:t=911s,由动点P从点B出发以1cm/s速度向点C移动,同时动点Q从C出发以2cm/s的速度向点A移动,其中一个点到终点另一个点也
20、随之停止,可求出t的取值范围应该为0t2 ,验证可知两种情况下所求的t均满足条件,故CPQ与CBA相似,运动的时间为或911秒【点睛】本题考查一元一次方程的实际运用,相似三角形的判定和性质,掌握相似三角形的性质是解决问题的关键2、(1)7;(2)S=23t2(0t3)4t-6(3t4)-23t2+283t-503(47)【解析】【分析】(1)根据正方形的性质可证得EPDABC(AAS),即可求得答案;(2)分三种情况:当0t3时,如图2,设PQ与AC交于点F,由FPCABC,可求得FC=43t,再运用三角形面积公式即可;当3t4时,如图3,设PQ与AE交于点G,过点A作AFPQ交CD于点F,先
21、证明四边形AFPG是平行四边形,再证明AFCABC(AAS),即可求得答案;当4t7时,如图4,PQ交AE于G,交DE于H,由PHDGHE,ABCHPD,SS正方形ACDESEGH,即可求得答案;当t7时,S16【详解】(1)四边形ACDE是正方形,CPtcm,ACDCDE90,ACCDDE4cm,直线l经过点E,BPQB,EPDABC(AAS),PDBC3cm,CPCD+PD4+37(cm),t7,故答案为:7;(2)当0t3时,如图2,设PQ与AC交于点F,FCPACB90,FPCABC,FPCABC,FCCP=ACBC,即FCt=43,FC=43t,S=12CPFC=12t43t=23t
22、2;当3t4时,如图3,设PQ与AE交于点G,过点A作AFPQ交CD于点F,四边形ACDE是正方形,AECD,四边形AFPG是平行四边形,AFPQ,AFCBPQ,BPQABC,ACFACB90,ACAC,AFCABC(AAS),CFCB3cm,FPCPCF(t3)cm,S=SAFC+SAFPG=12CFAC+FPAC=1234+4(t-3)=4t-6;当4t7时,如图4,PQ交AE于G,交DE于H,四边形ACDE是正方形,PDHE90,PHDGHE,PHDGHE,DPGE=DHEH,即t-4GE=DHEH,ACBHDP90,ABCHPD,ABCHPD,DHDP=ACBC,即DHt-4=43,D
23、H=43(t-4),EH=DE-DH=4-43(t-4)=-43t+283,GEEH=DPDH=34,GE=34(-43t+283)=-t+7,S=S正方形ACDE-SEGH=16-12(-t+7)(-43t+283)=-23t2+283t-503;当t7时,S16;综上所述,S=23t2(0t3)4t-6(3t4)-23t2+283t-503(47)【点睛】本题考查正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质,掌握相关知识点是解决问题的关键3、(1);(2)见详解【解析】【分析】(1)由四边形ABCD,AEFG是正方形,得到,于是得到,推出,由于,于是得到结论;(2)由正方形
24、的性质可得,由,可证,由此证出;【详解】(1)四边形ABCD,四边形AEFG为正方形故答案为:(2)四边形ABCD,四边形AEFG为正方形 ,【点睛】本题主要考查了正方形的性质,勾股定理和相似三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解4、(1)作图见解析;(2)证明见解析;【解析】【分析】(1)由“好点”定义知;在中,在线段上;若与全等,可得,此时可以得出点为中,垂线与线段的交点,即“好点”;在中,由斜边上的中线等于斜边的一半,可知当为线段的中点时,有,为“好点”进而得出直角三角形的“好点”是斜边上的垂足与斜边的中点(2)由同弧所对圆周角相等可知 , ;可得;点为 中边上的
25、“好点”,故有;可知,故点为边的中点,进而由垂径定理可证,连接,为直径;设,;在,;在,;由可得,进而求出的值【详解】解:(1)如答图1所示过点向线段做垂线,交点为斜边上的垂足为“好点”连接与线段的中点 为的中线斜边上的中点为“好点”综上所述,斜边上的垂足与斜边上的中点为“好点”(2)证明:由题意可知 ,又点为 中边上的“好点”有点为边的中点由垂径定理可证解:如答图2,连接,为直径设,在,在,又【点睛】本题考察了直角三角形中垂线与中线的性质、三角形相似、垂径定理、圆周角、勾股定理等知识点解题的关键与难点在于理解新定义与所学知识的连接,是否能灵活运用已有知识5、(1)见解析;(2)CE=2513【解析】【分析】(1)如图,作辅助线;证明ODAC;由DEAC,得到DEAC,即可解决问题(2)如图,作辅助线;证明ACAB13;证明CDECAD,得到CECD=DCAC,求出CE的长即可解决问题【详解】解:(1)连接OD;D为BC的中点,O为AB的中点,ODAC;DEAC,DEOD,DE是圆O的切线(2)AB是直径,ADBC;D为BC的中点,AD是BC的垂直平分线,ACAB13;CC,DECADC90,CDECAD,CECD=DCAC,而ACAB13,CD5,CE2513【点睛】此题主要考查圆的切线的判定与性质综合,解题的关键是熟知相似三角形的判定与性质、圆的切线的判定定理
限制150内