2022年一元二次方程培优提高例题 .pdf
《2022年一元二次方程培优提高例题 .pdf》由会员分享,可在线阅读,更多相关《2022年一元二次方程培优提高例题 .pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、考点一、概念(1) 定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。(2) 一般表达式:)0(02acbxax难点: 如何理解“未知数的最高次数是2” :该项系数不为“0” ;未知数指数为“2” ;若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。典型例题 :例 1、下列方程中是关于x 的一元二次方程的是()A 12132xxB 02112xxC 02cbxaxD 1222xxx变式: 当 k 时,关于 x 的方程3222xxkx是一元二次方程。例 2、方程0132mxxmm是关于 x 的一元二次方程,则m 的值为。针对练习:1、方程78
2、2x的一次项系数是,常数项是。2、若方程021mxm是关于 x 的一元一次方程,求 m 的值;写出关于x 的一元一次方程。 3、若方程112? xmxm是关于 x 的一元二次方程,则m 的取值范围是。 4、若方程nxm+xn-2x2=0 是一元二次方程,则下列不可能的是()A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1考点二、方程的解概念: 使方程两边相等的未知数的值,就是方程的解。应用: 利用根的概念求代数式的值;典型例题 :例 1、已知322yy的值为 2,则1242yy的值为。例 2、关于 x 的一元二次方程04222axxa的一个根为0,则 a 的值为。说明:
3、任何时候,都不能忽略对一元二次方程二次项系数的限制. 例 3、已知关于x 的一元二次方程002acbxax的系数满足bca,则此方程必有一根为。说明: 本题的关键点在于对“代数式形式”的观察,再利用特殊根“-1 ”巧解代数式的值。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 7 页 - - - - - - - - - 例 4、已知ba,是方程042mxx的两个根,cb,是方程0582myy的两个根,则 m 的值为。针对练习:1、已知方程0102kxx的一根是2,则 k
4、为,另一根是。2、已知关于x 的方程022kxx的一个解与方程311xx的解相同。求 k 的值;方程的另一个解。3、已知 m 是方程012xx的一个根,则代数式mm2。 4、已知a是0132xx的根,则aa622。 5、方程02acxcbxba的一个根为()A 1B 1 C cbD a 6、若?yx则yx324,0352。考点三、解法方法: 直接开方法;因式分解法;配方法;公式法关键点: 降次类型一、直接开方法:mxmmx,02对于max2,22nbxmax等形式均适用直接开方法典型例题 :例 1、解方程:;08212x216252x=0; ;09132x例 2、解关于x 的方程:02bax例
5、 3、若2221619xx,则 x 的值为。针对练习: 下列方程无解的是()A.12322xxB.022xC.xx132D.092x类型二、因式分解法:021xxxx21,xxxx或方程特点:左边可以分解为两个一次因式的积,右边为“0” ,方程形式:如22nbxmax,cxaxbxax,0222aaxx典型例题 :名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 7 页 - - - - - - - - - 例 1、3532xxx的根为()A 25xB 3xC 3,2521x
6、xD 52x例 2、若044342yxyx,则 4x+y 的值为。变式 1:2222222, 06b则ababa。变式 2:若142yxyx,282xxyy,则 x+y 的值为。例 3、方程062xx的解为()A.2321,xxB.2321,xxC.3321,xxD.2221,xx例 4、解方程:04321322xx例 5、已知023222yxyx,则yxyx的值为。变式 :已知023222yxyx,且0,0 yx,则yxyx的值为。针对练习:1、下列说法中:方程02qpxx的二根为1x,2x,则)(212xxxxqpxx)4)(2(862xxxx. )3)(2(6522aababa)()(2
7、2yxyxyxyx方程07)13(2x可变形为0)713)(713(xx正确的有()A.1 个B.2 个C.3 个D.4 个2、以71与71为根的一元二次方程是()A0622xxB0622xxC0622yyD0622yy 3、写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数:写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数: 4、若实数x、y 满足023yxyx,则 x+y 的值为()名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 7 页 - - -
8、 - - - - - - A、-1 或-2 B、-1 或 2 C、1 或-2 D 、1 或 2 5、方程:2122xx的解是。类型三、配方法002acbxax222442aacbabx在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。典型例题 :例 1、试用配方法说明322xx的值恒大于0。例 2、已知 x、y 为实数,求代数式74222yxyx的最小值。例 3、已知, x、yyxyx0136422为实数,求yx的值。例 4、分解因式:31242xx针对练习: 1、试用配方法说明47102xx的值恒小于0。 2、已知041122xxxx,则xx1 . 3、若912322
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年一元二次方程培优提高例题 2022 一元 二次方程 提高 例题
限制150内