2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向练习试卷(精选含详解).docx
《2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向练习试卷(精选含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向练习试卷(精选含详解).docx(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪教版七年级数学第二学期第十四章三角形定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知,要使,添加的条件不正确的是( )ABCD2、一副三角板如图放置,点A在DF的延长线上,DBAC90
2、,E30,C45,若BC/DA,则ABF的度数为()A15B20C25D303、定理:三角形的一个外角等于与它不相邻的两个内角的和已知:如图,ACD是ABC的外角求证:ACDA+B证法1:如图,A70,B63,且ACD133(量角器测量所得)又13370+63(计算所得)ACDA+B(等量代换)证法2:如图,A+B+ACB180(三角形内角和定理),又ACD+ACB180(平角定义),ACD+ACBA+B+ACB(等量代换)ACDA+B(等式性质)下列说法正确的是()A证法1用特殊到一般法证明了该定理B证法1只要测量够100个三角形进行验证,就能证明该定理C证法2还需证明其他形状的三角形,该定
3、理的证明才完整D证法2用严谨的推理证明了该定理4、如图, ABCCDA,BAC=80,ABC=65,则CAD的度数为( )A35B65C55D405、若三条线段中a3,b5,c为奇数,那么以a、b、c为边组成的三角形共有( )A1个B2个C3个D4个6、三角形的外角和是()A60B90C180D3607、有下列说法:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;等腰三角形一腰上的高与底边的夹角与顶角互余;等腰三角形顶角的平分线是它的对称轴;等腰三角形两腰上的中线相等其中正确的说法有( )个A1B2C3D48、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )A1,2,3B
4、3,4,7C2,3,4D4,5,109、如图,已知RtABC中,C90,A30,在直线BC上取一点P,使得PAB是等腰三角形,则符合条件的点P有( )A1个B2个C3个D4个10、有两边相等的三角形的两边长为,则它的周长为( )ABCD或第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,ACB=90,AC=BC,BECE于点E,ADCE于点D若AD=3cm,BE=1cm,则DE=_2、若一条长为24cm的细线能围成一边长等于9cm的等腰三角形,则该等腰三角形的腰长为_cm3、在平面直角坐标系中,则点的坐标为_4、如图,上午9时,一艘船从小岛A出发,以12
5、海里的速度向正北方向航行,10时40分到达小岛B处,若从灯塔C处分别测得小岛A、B在南偏东34、68方向,则小岛B处到灯塔C的距离是_海里5、如图,在中,交BC的延长线于点E,若,点C是BE中点,则_三、解答题(10小题,每小题5分,共计50分)1、在中,点D是直线AC上一动点,连接BD并延长至点E,使过点E作于点F(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是_(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是_2、如图,在等腰ABC和等腰ADE中
6、,ABAC,ADAE,BACDAE且C、E、D三点共线,作AMCD于M若BD5,DE4,求CM3、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,BAECAD,ABAE,ADAC(1)求证:DECBAE;(2)如图2,当BAECAD30,ADAB时,延长DE、AB交于点G,请直接写出图中除ABE、ADC以外的等腰三角形4、人教版初中数学教科书八年级上册第36、37页告诉我们作一个角等于已知角的方法:已知:AOB求作:AOB,使AOBAOB作图:(1)以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;(2)画一条射线OA,以点O为圆心,OC长为半径画弧,交OA于点C;(
7、3)以点C为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D;(4)过点D画射线OB,则AOBAOB请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案写在相应的横线上)证明:由作图可知,在OCD和OCD中,OCD ,AOBAOB(2)这种作一个角等于已知角的方法依据是 (填序号)AAS;ASA;SSS;SAS5、如图,已知点B,F,C,E在同一直线上,ABDE,BFCE,ABED,求证:AD6、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF(1)若,求的度数;(2)若,求的大小;(3)猜想CF,BF,AF之间的数量关
8、系,并证明7、如图,在ABC中,CE平分ACB交AB于点E,AD是ABC边BC上的高,AD与CE相交于点F,且ACB80,求AFE的度数8、如图所示,四边形的对角线、相交于点,已知,求证:(1);(2)9、已知AMCN,点B在直线AM、CN之间,ABBC于点B(1)如图1,请直接写出A和C之间的数量关系: (2)如图2,A和C满足怎样的数量关系?请说明理由(3)如图3,AE平分MAB,CH平分NCB,AE与CH交于点G,则AGH的度数为 10、已知,AD,BC平分ABD,求证:ACDC-参考答案-一、单选题1、D【分析】已知条件ABAC,还有公共角A,然后再结合选项所给条件和全等三角形的判定定
9、理进行分析即可【详解】解:A、添加BDCE可得ADAE,可利用利用SAS定理判定ABEACD,故此选项不合题意;B、添加ADCAEB可利用AAS定理判定ABEACD,故此选项不合题意;C、添加BC可利用ASA定理判定ABEACD,故此选项不合题意;D、添加BECD不能判定ABEACD,故此选项符合题意;故选:D【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解题关键2、A【分析】先求出EFD=60,ABC=45,由BCAD,得到EFD=FBC=60,则ABF=FBC-ABC=15【详解】解:DB
10、AC90,E30,C45,EFD=60,ABC=45,BCAD,EFD=FBC=60,ABF=FBC-ABC=15,故选A【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键3、D【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本
11、题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.4、A【分析】先根据三角形内角和定理求出ACB=35,再根据全等三角形性质即可求出CAD=35【详解】解:BAC=80,ABC=65,ACB=180-BAC-ABC=35,ABCCDA,CAD=ACB=35故选:A【点睛】本题考查了三角形的内角和定理,全等三角形的性质,熟知两个定理是解题关键5、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数【详解】解:c的范围是:53c5+3,即2c8c是奇数,c3或5或7,有3个值则对应的三角形有3个故选:C【点睛】本题主要考查了三角形三边关系,准
12、确分析判断是解题的关键6、D【分析】根据三角形的内角和定理、邻补角的性质即可得【详解】解:如图,又,即三角形的外角和是,故选:D【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键7、B【分析】根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可【详解】解:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;等腰三角形的顶角平分线在它的对称轴上,原说法错误;等腰三角形两腰上的中线相等,说法正确综上,正确的有,共2个,故选:B【点睛】本题考查了轴对称的性质及等腰三角形的性质,掌握轴对
13、称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键8、C【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解【详解】解:A、1+23,不能组成三角形,不符合题意;B、3+47,不能组成三角形,不符合题意;C、2+34,能组成三角形,符合题意;D、4+510,不能组成三角形,不符合题意;故选:C【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可9、B【分析】根据等腰三角形的判定定理,结合图形即可得到结论【详解】解:以点A、B为圆心,AB长为半径画弧,交直线BC于两个点,然后作AB的垂直平分线交直线BC于点,如图所示:C90,A30,是等边三角形,点重
14、合,符合条件的点P有2个;故选B【点睛】本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解题的关键10、D【分析】有两边相等的三角形,是等腰三角形,两边分别为和,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为综上所述,该等腰三角形的周长是或故选:D【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论二、填
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 基础 强化 沪教版 七年 级数 第二 学期 第十四 三角形 定向 练习 试卷 精选 详解
链接地址:https://www.taowenge.com/p-32528860.html
限制150内