2021-2022学年度北师大版九年级数学下册第三章-圆综合练习练习题(无超纲).docx
《2021-2022学年度北师大版九年级数学下册第三章-圆综合练习练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版九年级数学下册第三章-圆综合练习练习题(无超纲).docx(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第三章 圆综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,以边上一点为圆心作,恰与边,分别相切于点,则阴影部分的面积为( )ABCD2、如图,正的边长为
2、,边长为的正的顶点R与点A重合,点P,Q分别在AC,AB上,将沿着边AB,BC,CA连续翻转(如图所示),直至点P第一次回到原来的位置,则点P运动路径的长为( )ABCD3、如图,点,在上,是等边三角形,则的大小为( )A60B40C30D204、在ABC中,点O为AB中点以点C为圆心,CO长为半径作C,则C 与AB的位置关系是( )A相交B相切C相离D不确定5、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为()A4m2B12m2C24m2D24m26、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切时,点P
3、的坐标是()ABC或D(2,0)或(5,0)7、如图,点A,B,C都在O上,连接CA,CB,OA,OB若AOB=140,则ACB为( )A40B50C70D808、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70,则P的度数为( ) A70B50C20D409、如图,菱形ABCD的顶点B,C,D均在A上,点E在弧BD上,则BED的度数为()A90B120C135D15010、如图,点A,B,C均在O上,连接OA,OB,AC,BC,如果OAOB,那么C的度数为( )A22.5B45C90D67.5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、线段,
4、绕点O顺时针旋转45,则点A走过的路径长为_2、如图,AB是O的直径,AT是O的切线,ABT50,BT交O于点C,点E是AB上一点,延长CE交O于点D,则CDB_3、如图,以矩形的对角线为直径画圆,点、在该圆上,再以点为圆心,的长为半径画弧,交于点若,则图中影部分的面积和为 _(结果保留根号和4、若一个扇形的半径是18cm,且它的弧长是,则此扇形的圆心角等于_5、如图,正五边形ABCDE内接于O,作OFBC交O于点F,连接FA,则OFA_三、解答题(5小题,每小题10分,共计50分)1、如图,已知正方形 ABCD 的边长为4,以点 A 为圆心,1为半径作圆,点 E 是A 上的一动点,点 E 绕
5、点 D 按逆时针方向转转 90,得到点 F,接 AF(1)求CF长;(2)当A、E、F三点共线时,求EF长;(3) AF的最大值是_2、如图,在正方形网格中,每一个小正方形的边长都为1,ABC的顶点分别为A(2,3),B(2,1),C(5,4)(1)只用直尺在图中找出ABC的外心P,并写出P点的坐标_(2)以(1)中的外心P为位似中心,按位似比2:1在位似中心的左侧将ABC放大为ABC,放大后点A、B、C的对应点分别为A、B、C,请在图中画出ABC;(3)若以A为圆心,为半径的A与线段BC有公共点, 则的取值范围是_3、已知直线m与O,AB是O的直径,ADm于点D(1)如图,当直线m与O相交于
6、点E、F时,求证:DAE=BAF (2)如图,当直线m与O相切于点C时,若DAC=35,求BAC的大小;(3)若PC2,PB2,求阴影部分的面积(结果保留)4、如图,在半O中,直径AB的长为6,点C是半圆上一点,过圆心O作AB的垂线交线段AC的延长线于点D,交弦BC于点E(1)求证:DABC;(2)若OECE,求图中阴影部分的面积(结果保留根号和)5、已知:如图,ABC为锐角三角形,ABAC 求作:一点P,使得APCBAC作法:以点A为圆心, AB长为半径画圆;以点B为圆心,BC长为半径画弧,交A于点C,D两点;连接DA并延长交A于点P点P即为所求(1)使用直尺和圆规,依作法补全图形(保留作图
7、痕迹);(2)完成下面的证明证明:连接PC,BDABAC,点C在A上BCBD,_BACCAD 点D,P在A上,CPDCAD(_) (填推理的依据)APCBAC-参考答案-一、单选题1、A【分析】连结OC,根据切线长性质DC=AC,OC平分ACD,求出OCD=OCA=30,利用在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可【详解】解:连结OC,以边上一点为圆心作,恰与边,分别相切于点A, ,DC=AC,OC平分ACD,ACD=90-B=60,OCD=OCA=30,在RtABC中,AC=ABta
8、nB=3,在RtAOC中,ACO=30,AO=ACtan30=,OD=OA=1,DC=AC=,DOC=360-OAC-ACD-ODC=360-90-90-60=120,S阴影=故选择A【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键2、B【分析】从图中可以看出在AB边,翻转的第一次是一个120度的圆心角,半径是1,第二次是以点P为圆心,所以没有路程,同理在AC和BC上也是相同的情况,由此求解即可【详解】解:从图中可以看出在AB边,翻转的第一次是一个12
9、0度的圆心角,半径是1,所以弧长=,第二次是以点P为圆心,所以没有路程,在BC边上,第一次,第二次同样没有路程,AC边上也是如此,点P运动路径的长为3=2故选:B【点睛】本题主要考查了等边三角形的性质,求弧长,解题的关键在于能够根据题意得到P点的运动轨迹3、C【分析】由为等边三角形,得:AOB=60,再根据圆周角定理,即可求解【详解】解:为等边三角形,AOB=60,=AOB =60=30故选C【点睛】本题主要考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是解题的关键4、B【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得C 与AB的位置关系【详解】
10、解:连接,,点O为AB中点CO为C的半径,是的切线,C 与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键5、D【分析】先根据等边三角形的性质求出OBC的面积,然后由地基的面积是OBC的6倍即可得到答案【详解】解:如图所示,正六边形ABCDEF,连接OB,OC,过点O作OPBC于P,由题意得:BC=4cm,六边形ABCD是正六边形,BOC=3606=60,又OB=OC,OBC是等边三角形,故选D【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键6、C【分析】由题意根据函数解析
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年度 北师大 九年级 数学 下册 第三 综合 练习 练习题 无超纲
限制150内