2022年精品解析北师大版八年级数学下册第六章平行四边形定向攻克试题(含解析).docx
《2022年精品解析北师大版八年级数学下册第六章平行四边形定向攻克试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版八年级数学下册第六章平行四边形定向攻克试题(含解析).docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版八年级数学下册第六章平行四边形定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个正多边形的内角和是540,则该正多边形的一个外角的度数为( )A45B55C60D722、如图,在六边形中
2、,若,则( )A180B240C270D3603、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )A(7,3)B(8,2)C(3,7)D(5,3)4、如图所示,ABCD,ADBC,则图中的全等三角形共有( )A1对B2对C3对D4对5、若一个多边形的外角和与它的内角和相等,则这个多边形是( )A三角形B四边形C五边形D六边形6、正五边形的外角和是( )ABCD7、如图,在ABC中,点E,F分别是AB,AC的中点已知B55,则AEF的度数是()A75B60C55D408、如图,已知平行四边形ABCD的面积为8,E、F分别
3、是BC、CD的中点,则AEF的面积为()A2B3C4D59、如图,桐桐从A点出发,前进3m到点B处后向右转20,再前进3m到点C处后又向右转20,这样一直走下去,她第一次回到出发点A时,一共走了( )A100mB90mC54mD60m10、四边形的内角和与外角和的数量关系,正确的是()A内角和比外角和大180B外角和比内角和大180C内角和比外角和大360D内角和与外角和相等第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,为上的两个动点,且,则的最小值是_2、如图中x的值为 _3、如图,在RtABC中,ACB=90,AB=5,BC=3,将ABC绕点B顺时针旋
4、转得到AB C,其中点A,C的对应点分别为点连接,直线交于点D,点E为AC的中点,连接DE则DE的最小值为_4、如图,点F在正五边形ABCDE的内部,ABF为等边三角形,则AFC等于_5、七边形内角和的度数是_三、解答题(5小题,每小题10分,共计50分)1、如图,AOB是等腰直角三角形(1)若A(4,1),求点B的坐标;(2)ANy轴,垂足为N,BMy轴,垂足为点M,点P是AB的中点,连PM,求PMO度数;(3)在(2)的条件下,点Q是ON的中点,连PQ,求证:PQAM2、在中,将ABO绕点O逆时针方向旋转90得到(1)则线段的长是_,_(2)连接求证四边形是平行四边形;(3)求四边形的面积
5、?3、ABC和ADE均为等腰直角三角形,BACDAE90,将ADE绕点A逆时针旋转一周,连接DB,将线段DB绕点D逆时针旋转90得DF,连接EF(1)如图1,当D在AC边上时,线段CD与EF的关系是 , (2)如图2,当D在ABC的内部时,(1)的结论是否成立?说明理由;(3)当AB3,AD,DAC 45时,直接写出DEF的面积4、若一个多边形的内角和与外角的和是1440,求这个多边形的边数5、ABC和GEF都是等边三角形问题背景:如图1,点E与点C重合且B、C、G三点共线此时BFC可以看作是AGC经过平移、轴对称或旋转得到请直接写出得到BFC的过程迁移应用:如图2,点E为AC边上一点(不与点
6、A,C重合),点F为ABC中线CD上一点,延长GF交BC于点H,求证:联系拓展:如图3,AB12,点D,E分别为AB、AC的中点,M为线段BD上靠近点B的三等分点,点F在射线DC上运动(E、F、G三点按顺时针排列)当最小时,则MDG的面积为_-参考答案-一、单选题1、D【分析】设正多边形的边数为n,则根据内角和为540可求得边数n,从而可求得该正多边形的一个外角的度数【详解】设正多边形的边数为n,则由题意得:180(n2)=540解得:n=5即此正多边形为正五边形,其一个外角为3605=72故选:D【点睛】本题考查了多边形的内角和与多边形的外角和,掌握多边形的内角和与外角定理是关键2、C【分析
7、】根据多边形外角和求解即可【详解】解: , ,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键3、A【分析】利用平行四边形的对边平行且相等的性质,先利用对边平行,得到D点和C点的纵坐标相等,再求出CD=AB=5,得到C点横坐标,最后得到C点的坐标【详解】解: 四边形ABCD为平行四边形。且。C点和D的纵坐标相等,都为3A点坐标为(0,0),B点坐标为(5,0), D点坐标为(2,3),C点横坐标为, 点坐标为(7,3)故选:A【点睛】本题主要是考察了平行四边形的性质、利用线段长求点坐标,其中,熟练应用平行四边形对边平行且相等的性质,是解决与平行四边形有关的坐标题的关键
8、4、D【分析】根据平行四边形的判定与性质,求解即可【详解】解:ABCD,ADBC四边形为平行四边形,、又,、图中的全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质5、B【分析】任意多边形的外角和为360,然后利用多边形的内角和公式计算即可【详解】解:设多边形的边数为n根据题意得:(n2)180360,解得:n4故选:B【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360和多边形的内角和公式是解题的关键6、B【分析】根据多边形的外角和等于360,即可求解【详解】解:任意多边形的外角和都是3
9、60,故正五边形的外角和的度数为360故选:B【点睛】本题主要考查多边形的外角和定理,解答本题的关键是掌握任意多边形的外角和都是3607、C【分析】证EF是ABC的中位线,得EFBC,再由平行线的性质即可求解【详解】解:点E,F分别是AB,AC的中点,EF是ABC的中位线,EFBC,AEF=B=55,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EFBC是解题的关键8、B【分析】连接AC,由平行四边形的性质可得,再由E、F分别是BC,CD的中点,即可得到,由此求解即可【详解】解:如图所示,连接AC,四边形ABCD是平行四边形,ADBC,AD=BC,A
10、B=CD,ABCD,E、F分别是BC,CD的中点,故选B【点睛】本题主要考查了平行四边形的性质,与三角形中线有关的面积问题,解题的关键在于能够熟练掌握平行四边形的性质9、C【分析】根据多边形的外角和及每一个外角的度数,可求出多边形的边数,再根据题意求出正多边形的周长即可【详解】解:由题意可知,当她第一次回到出发点A时,所走过的图形是一个正多边形,由于正多边形的外角和是360,且每一个外角为20,3602018,所以它是一个正18边形,因此所走的路程为18354(m),故选:C【点睛】本题考查了多边形的内角与外角,能熟记多边形的外角和定理是解此题的关键,注意:多边形的外角和=36010、D【分析
11、】直接利用多边形内角和定理分别分析得出答案【详解】解:A四边形的内角和与外角和相等,都等于360,故本选项表述错误;B四边形的内角和与外角和相等,都等于360,故本选项表述错误;C六四边形的内角和与外角和相等,都等于360,故本选项表述错误;D四边形的内角和与外角和相等,都等于360,故本选项表述正确故选:D【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360二、填空题1、【分析】过点A作AD/BC,且ADMN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A,连接AA交BC于点O,连接AM,三点D、M、A共线时,最小为AD的长,利用勾股定理求A
12、D的长度即可解决问题【详解】解:过点A作AD/BC,且ADMN,连接MD,则四边形ADMN是平行四边形,MDAN,ADMN,作点A关于BC的对称点A,连接A A交BC于点O,连接AM,则AMAM,AMANAMDM,三点D、M、A共线时,AMDM最小为AD的长,AD/BC,AOBC,DA90,BCBOCOAO,在RtAD中,由勾股定理得:D的最小是值为:,故答案为:【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键2、130【分析】由题意直接根据五边形的内角和是540列出方程,解方程即可【详解】解:因为五边形的内角和是:(5
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 精品 解析 北师大 八年 级数 下册 第六 平行四边形 定向 攻克 试题
限制150内