【北京特级教师 同步复习精讲辅导】2022-2022高中数学 古典概型课后练习 新人教版必修3.doc





《【北京特级教师 同步复习精讲辅导】2022-2022高中数学 古典概型课后练习 新人教版必修3.doc》由会员分享,可在线阅读,更多相关《【北京特级教师 同步复习精讲辅导】2022-2022高中数学 古典概型课后练习 新人教版必修3.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、古典概型课后练习一个盒子中装有5个编号依次为1、2、3、4、5的球,这5个球除号码外完全相同,有放回的连续抽取两次,每次任意地取出一个球(1)列举出所有可能结果(2)设第一次取出的球号码为x,第二次取出的球号码为y,写出B=“点(x,y)落在直线 y=x+1 上方”这一事件包含的基本事件一个盒子中装有4个编号依次为1、2、3、4的球,这4个球除号码外完全相同,先从盒子中随机取一个球,该球的编号为X,将球放回袋中,然后再从袋中随机取一个球,该球的编号为Y(1)列出所有可能结果(2)写出A=“取出球的号码之和小于4”这一事件包含的基本事件(3)写出B=“编号XY”这一事件包含的基本事件从1、2、3
2、、4中任取两个不同的数字构成一个两位数,则这个两位数大于20的概率为 一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率;(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率某医院派出医生下乡医疗,一天内派出医生人数及其概率如下:医生人数012345人及以上概率0.10.160.30.20.20.04求:(1)派出医生至多2人的概
3、率;(2)派出医生至少2人的概率袋中有若干小球,分别为红色、黑色、黄色、白色,从中任取一球,得到红球的概率为,得到黑球或黄球的概率为,得到黄球或白球的概率为试求任取一球,得到黑球,得到黄球,得到白球的概率各是多少?在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等求取出的两个球上标号为相邻整数的概率在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等求事件“取出的两个球上标号之和能被3整除”的概率从1,3,5,7这四个数中随机地取两个数组成一个两位数,则组成的两
4、位数是5的倍数的概率为 已知:a、b、c为集合A=1,2,3,4,5,6中三个不同的数,通过如下框图给出的一个算法输出一个整数a,则输出的数a=5的概率是 假定某运动员每次投掷飞镖正中靶心的概率为40%现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果经随机模拟产生了20组随机数:93 28 12 45 85 69 68 34 31 2573 93 02 75 56 48 87 30 11 35据此估计,该运动员两次掷镖恰有一次
5、正中靶心的概率为 从某小组的2名女生和3名男生中任选2人去参加一项公益活动(1)求所选2人中恰有一名男生的概率;(2)求所选2人中至少有一名女生的概率已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12(1)求甲射击一次,命中不足8环的概率;(2)求甲射击一次,至少命中7环的概率有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()AB C D设集合A1, 2,B=1, 2, 3,分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a, b),记“点P(a
6、, b)落在直线x+y=n上”为事件(2n5,nN),若事件Cn的概率最大,则n的所有可能值为( )A3 B4C2和5D3和4已知关于x的一元二次函数f(x)=ax2-bx+1,设集合P=1,2,3,Q=-1,1,2,3,4,分别从集合P和Q中随机取一个数作为a和b(1)求函数y = f(x)有零点的概率;(2)求函数y = f(x)在区间1,+)上是增函数的概率古典概型课后练习参考答案见详解详解:(1)由题意知共有25种结果,用一对有序数对表示出可能出现的情况,第一个数字表示第一次抽到的数字,第二个数字表示第二次抽到的数字,下面列举出所有情况:(1,1)(1,2)(1,3)(1,4)(1,5
7、)(2,1)(2,2)(2,3)(2,4)(2,5)(3,1)(3,2)(3,3)(3,4)(3,5)(4,1)(4,2)(4,3)(4,4)(4,5)(5,1)(5,2)(5,3)(5,4)(5,5)(2)满足条件的事件是点(x,y)落在直线y=x+1上方的有:(1,3),(1,4),(1,5),(2,4),(2,5),(3,5)共6种见详解详解:(1)所有可能的结果共有:(1,1)、(1,2)、(1,3)、(1,4)、(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(4,1)、(4,2)、(4,3)、(4,4),共计16个(2)事件“取出球的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北京特级教师 同步复习精讲辅导 【北京特级教师 同步复习精讲辅导】2022-2022高中数学 古典概型课后练习 新人教版必修3 北京 特级 教师 同步 复习 辅导 2022 高中数学 古典 课后 练习

链接地址:https://www.taowenge.com/p-32532471.html
限制150内