必考点解析人教版九年级数学下册第二十七章-相似专项测评练习题(名师精选).docx
《必考点解析人教版九年级数学下册第二十七章-相似专项测评练习题(名师精选).docx》由会员分享,可在线阅读,更多相关《必考点解析人教版九年级数学下册第二十七章-相似专项测评练习题(名师精选).docx(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十七章-相似专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知ABCDEF,BD:DF2:5,则的值为()ABCD2、下列四条线段中,成比例的是( )A,B,C,D
2、,3、如图,把一张矩形纸片ABCD沿着AD和BC边的中点连线EF对折,对折后所得的矩形正好与原来的矩形相似,则原矩形纸片长与宽的比为( )A4:1BCD2:14、如图,BC2,则AB的长为( )A6B5C4D35、如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF交于点H下列结论:CF2AE;DFPBPH;DP2PHPC;PE:BC(23):3正确的有()A1个B2个C3个D4个6、如图,在边长为2的正方形ABCD中,已知BE1,将ABE沿AE折叠,点G与点B对应,连结BG并延长交CD于点F,则GF的长为()ABCD7、在ABC中,
3、ABAC,A36,BD平分ABC,交AC于点DBC8,则AC()A44B44C16D128、如图,在RtABC中,C90,AB10,BC8点P是边AC上一动点,过点P作PQAB交BC于点Q,D为线段PQ的中点,当BD平分ABC时,AP的长度为( )ABCD9、根据下列条件,判断ABC与ABC能相似的条件有()CC90,A25,B65;C90,AC6cm,BC4cm,AC9cm,BC6cm;AB10cm,BC12cm,AC15cm,AB150cm,BC180cm,AC225cm;ABC与ABC是有一个角为80等腰三角形A1对B2对C3对D4对10、如图在ABC外任取一点O,连接AO、BO、CO,
4、并取它们的中点D、E、F,得到DEF,则下列说法正确的个数是()ABC与DEF是位似图形;ABC与DEF是相似图形;ABC与DEF的周长比为1:2;ABC与DEF的面积比为4:1A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AD、BC是O中的两条弦并交于点E,连AB、CD,若,则ABE与CDE的面积比为_2、如图,在ABC中,D、E分别是边BC、AC上的点,AD与BE相交于点F,若E为AC的中点,BD:DC2:3,则AF:FD的值是 _3、生活中到处可见黄金分割的美如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近黄金比,可
5、以增加视觉美感若图中b为2米,则a约为_米4、若D为中边上一点,且EDBC交于E,若与的相似比为,则_5、如图,在ABC中,ABC45,过点C作CDAB于点D,过点B作BMAC于点M,连接MD,过点D作DNMD,交BM于点NCD与BM相交于点E,若点E是CD的中点;下列结论:AMD=45;NEEMMC;EM:MC:NE1:2:3;SACD2SDNE其中正确的结论有 _(填写序号即可)三、解答题(5小题,每小题10分,共计50分)1、小豪为了测量某塔高度,把镜子放在离塔(AB)50m的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到塔尖A,再测得DE2.4m,小豪目高CD1.68m,求塔
6、的高度AB2、如图,在矩形ABCD中,E是BC的中点,DFAE,垂足为F(1)求证:ABEDFA;(2)若AB6,BC4,求DF的长3、已知,在平面直角坐标系中,点O为坐标原点,A点坐标为,B点坐标为,且满足(1)如图1,求、的长;(2)如图2,P是y轴负半轴上一点,点C在第二象限,连接、,且,设,请用含t的式子表示的面积;(3)如图3,在(2)的条件下,作轴交的延长线于点D,与y轴交于点E,若E是的中点,求t值4、如图,在平面直角坐标系中,ABC的边AB在x轴上,且OBOA,以AB为直径的圆过点C,若点C的坐标为(0,4),且AB=10(1)求抛物线的解析式;(2)设点P是抛物线上在第一象限
7、内的动点(不与C,B重合),过点P作PDBC,垂足为点D,点P在运动的过程中,以P,D,C为顶点的三角形与COA相似时,求点P的坐标;(3)若ACB的平分线所在的直线l交x轴于点E,过点E任作一直线l分别交射线CA,CB(点C除外)于点M,N,则是否为定值?若是,求出该定值;若不是,请说明理由5、AB是O的弦,ODAB交O于点F,P是OF延长线上一点,连接PA、PB、AF、OA(1)如图1,若OAAP,求证:DAFPAF;(2)如图2,若DAFAPF,AB16,OP22,求OD的长-参考答案-一、单选题1、D【解析】【分析】根据平行线分线段成比例定理得到AC:CE=BD:DF=2:5,然后利用
8、比例性质即可得出答案【详解】解:,AC:CE=BD:DF,BD:DF2:5,AC:CE= BD:DF2:5,即CE=AC,AE=AC,AC:AE=2:7=故选:D【点睛】本题考查平行线分线段成比例即三条平行线截两条直线,所得的对应线段成比例,解题的关键是找出成比例线段进行求解2、B【解析】【分析】通过验证、中,任意两两一组的比值是否相等,即可判断【详解】解:A、中,任意两条线段的比值,与其他两个线段的比值都不相等,故错误B、中有:,故正确C、中,任意两条线段的比值,与其他两个线段的比值都不相等,故错误D、中,任意两条线段的比值,与其他两个线段的比值都不相等,故错误故选:B【点睛】本题主要是考查
9、了线段长度是否构成比例,直接判断任意两条线段是否与剩余两条比值相等即可解决本题3、B【解析】【分析】根据相似多边形对应边的比相等,设出原来矩形的长,就可得到一个方程,解方程即可求得【详解】根据条件可知:矩形AEFB矩形ABCD,E为AD中点,原矩形纸片长与宽的比为故选B【点睛】本题考查了相似多边形的性质,根据相似形的对应边的比相等,把几何问题转化为方程问题,正确分清对应边,以及正确解方程是解决本题的关键4、C【解析】【分析】由平行线分线段成比例,可得比例式:,代入值,利用线段间的关系,直接求解答案【详解】解:且, , , 故选:C【点睛】本题主要是考查了平行线分线段成比例,正确找到对应边长的比
10、例式,是求解这类问题的关键5、D【解析】【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论【详解】解:BPC是等边三角形,BPPCBC,PBCPCBBPC60,在正方形ABCD中,ABBCCD,AADCBCD90,ABEDCF30,BE2AE,ADBC,FEPPBC,EFPPCB,EPFBPC,FEPEFPEPF60,EFP是等边三角形,BECF,CF2AE,故正确;PCCD,PCD30,PDC75,FDP15,DBA45,PBD15,FDPPBD,DFPBPC60,DFPBPH,故正确;PDHPCD30,DPHDPC,DPHCPD,DP2PHPC,故正确;ABE30,A90,AEA
11、BBC,DCF30,DFDCBC,EFAE+DFBCBCBC,FE:BC(23):3,EFPE,PE:BC(23):3,故正确,综上,四个选项都正确,故选:D【点睛】本题考查了相似三角形的判定和性质,正方形的性质,等边三角形的性质,解答此题的关键是熟练掌握性质和定理6、B【解析】【分析】如图所示:设BF与AE相交于M,先证明EBMBAE,即可利用ASA证明RtABERtBCF得到CFBE1,从而求出,然后证明EBMFBC,得到 ,即 ,求出 ,即可得到BG2BM,即可得到FGBFBG3 【详解】解:如图所示:设BF与AE相交于M,四边形ABCD是正方形,ABBC,ABCBCD90,ABE沿AE
12、折叠得到AGE,AE是线段BG的垂直平分线,EMB90,EBM+BEM90,BAE+BEM90,EBMBAE,在RtABE和RtBCF中,RtABERtBCF(ASA),CFBE1,又EBMFBC,BMEBCF,EBMFBC,即,BG2BM,FGBFBG3,故选B【点睛】本题主要考查了正方形的性质,折叠的性质,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理等等,熟练掌握相似三角形的性质与判定条件是解题的关键7、A【解析】【分析】根据两角对应相等,判定两个三角形相似再用相似三角形对应边的比相等进行计算求出AC的长【详解】解:AB=AC,A=36,ABC=C=72,BD平分ABC,ABD
13、=DBC=36,BDC=ABD+A=72,BDC=C=72,AD=BD=BC=8A=DBC=36,C公共角,ABCBDC,即,整理得:AC2-8AC-64=0,解方程得:AC=4+4,或AC=4-4(舍去),故选:A【点睛】本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相似,再用相似三角形的性质对应边的比相等进行计算求出AC的长8、B【解析】【分析】根据勾股定理求出AC,根据平行线的性质、角平分线的定义得到QDBQ,证明CPQCAB,根据相似三角形的性质计算即可【详解】解:设BQx,在RtABC中,C90,AB10,BC8,由勾股定理得,BD平分ABC,QBDABD,PQA
14、B,QDBABD,QBDQDB,可设QDBQx,则CQ=8-x,D为线段PQ的中点,QP2QD2x,PQAB,CPQCAB,即解得:,APCACP,故选B【点睛】本题主要考查了角平分线的定义,平行线的性质,等腰三角形的性质与判定,相似三角形的性质与判定,勾股定理,熟练掌握相似三角形的性质与判定条件是解题的关键9、C【解析】【分析】根据相似三角形常用的判定方法对各个选项进行分析从而得到答案【详解】解:(1)CC90,A25B65CC,BB(2)C90,AC6cm,BC4cm, ,AC9,BC6,(3)AB10cm,BC12cm,AC15cm,AB150cm,BC180cm,AC225cm;(4)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必考 解析 人教版 九年级 数学 下册 第二 十七 相似 专项 测评 练习题 名师 精选
限制150内