【步步高】(江苏专用)2021届高考数学二轮专题突破 专题三 第3讲 推理与证明 文.doc
《【步步高】(江苏专用)2021届高考数学二轮专题突破 专题三 第3讲 推理与证明 文.doc》由会员分享,可在线阅读,更多相关《【步步高】(江苏专用)2021届高考数学二轮专题突破 专题三 第3讲 推理与证明 文.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第3讲推理与证明【高考考情解读】1.高考主要考查对合情推理和演绎推理的理解及应用;直接证明和间接证明的考查主要作为证明和推理数学命题的方法,常与函数、数列、不等式、解析几何等综合命题考查“归纳猜想证明”的模式,常与数列结合考查.2.归纳推理和类比推理等主要是和数列、不等式等内容联合考查,多以填空题的形式出现,难度中等;而考查证明问题的知识面广,涉及知识点多,题目难度较大,主要考查逻辑推理能力、归纳能力和综合能力,难度较大1 合情推理(1)归纳推理归纳推理是由部分到整体、由个别到一般的推理归纳推理的思维过程如下:(2)类比推理类比推理是由特殊到特殊的推理类比推理的思维过程如下:2 演绎推理(1)
2、“三段论”是演绎推理的一般模式,包括:大前提已知的一般性原理小前提所研究的特殊情况结论根据一般原理,对特殊情况做出的判断(2)合情推理与演绎推理的区别归纳和类比是常用的合情推理,从推理形式上看,归纳是由部分到整体、个别到一般的推理;类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确3 直接证明(1)综合法用P表示已知条件、已有的定义、定理、公理等,Q表示所要证明的结论,则综合法可用框图表示为(2)分析法用Q表示要证明的结论,则分析法可用框图表示为 得到一个明
3、显成立的条件4 间接证明反证法的证明过程可以概括为“否定推理否定”,即从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题)的过程用反证法证明命题“若p则q”的过程可以用如图所示的框图表示考点一归纳推理例1(2013湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,第n个三角形数为n2n,记第n个k边形数为N(n,k)(k3),以下列出了部分k边形数中第n个数的表达式:三角形数N(n,3)n2n,正方形数 N(n,4)n2,五边形数 N(n,5)n2n,六边形数 N(n,6)2n2n可以推测N(n,k)的表达式,由此计算N(10,24)_
4、.答案1 000解析由N(n,4)n2,N(n,6)2n2n,可以推测:当k为偶数时,N(n,k)n2n,N(10,24)100101 1001001 000. 归纳推理的一般步骤是:(1)通过观察个别事物发现某些相同的性质;(2)从已知的相同性质中推出一个明确表述的一般性命题并且在一般情况下,如果归纳的个别事物越多,越具有代表性,那么推广的一般性结论也就越可靠 (1)在数列an中,若a12,a26,且当nN*时,an2是anan1的个位数字,则a2 014_.答案2解析由a12,a26,得a32,a42,a54,a68,a72,a86,据此周期为6,又2 01463354,所以a2 014a
5、42.(2)(2012江西改编)观察下列各式:ab1,a2b23,a3b34,a4b47,a5b511,则a10b10_.答案123解析令ananbn,则a11,a23,a34,a47,得an2anan1,从而a618,a729,a847,a976,a10123.考点二类比推理例2(1)在平面几何中有如下结论:若正三角形ABC的内切圆面积为S1,外接圆面积为S2,则.推广到空间几何可以得到类似结论:若正四面体ABCD的内切球体积为V1,外接球体积为V2,则_.(2)椭圆与双曲线有许多优美的对偶性质,如对于椭圆有如下命题:AB是椭圆1(ab0)的不平行于对称轴且不过原点的弦,M为AB的中点,则k
6、OMkAB.那么对于双曲线则有如下命题:AB是双曲线1(a0,b0)的不平行于对称轴且不过原点的弦,M为AB的中点,则kOMkAB_.答案(1)(2)解析(1)本题考查类比推理,也即是由特殊到特殊的推理平面几何中,圆的面积与圆的半径的平方成正比,而在空间几何中,球的体积与半径的立方成正比,所以.(2)设A(x1,y1),B(x2,y2),M(x0,y0),则有将A,B代入双曲线1中得1,1,两式相减得,即,即,即kOMkAB. 类比推理是合情推理中的一类重要推理,强调的是两类事物之间的相似性,有共同要素是产生类比迁移的客观因素,类比可以由概念性质上的相似性引起,如等差数列与等比数列的类比;也可
7、以由解题方法上的类似引起,当然首先是在某些方面有一定的共性,才能有方法上的类比,本题即属于此类一般来说,高考中的类比问题多发生在横向与纵向类比上,如圆锥曲线中椭圆与双曲线等的横向类比以及平面与空间中三角形与三棱锥的纵向类比等 (1)现有一个关于平面图形的命题,如图,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个中心,则这两个正方体重叠部分的体积恒为_(2)命题p:已知椭圆1(ab0),F1、F2是椭圆的两个焦点,P为椭圆上的一个动点,过F2作F1PF2的外角平分线的垂线,垂足
8、为M,则OM的长为定值类比此命题,在双曲线中也有命题q:已知双曲线1(ab0),F1、F2是双曲线的两个焦点,P为双曲线上的一个动点,过F2作F1PF2的_的垂线,垂足为M,则OM的长为定值_答案(1)(2)内角平分线a解析(1)两个正方体重叠部分的体积为一个常数,可考虑极端情况,即两个正方体重叠部分恰好构成一个棱长为的正方体,这个小正方体的体积为.(2)对于椭圆,延长F2M与F1P的延长线交于Q.由对称性知,M为F2Q的中点,且PF2PQ,从而OMF1Q且OMF1Q.而F1QF1PPQF1PPF22a,所以OMa.对于双曲线,过F2作F1PF2内角平分线的垂线,垂足为M,类比可得OMa.因为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 步步高 【步步高】江苏专用2021届高考数学二轮专题突破 专题三 第3讲 推理与证明 江苏 专用 2021 高考 数学 二轮 专题 突破 推理 证明
限制150内