2022年人教版八年级数学下册第十七章-勾股定理定向测评试题(含解析).docx
《2022年人教版八年级数学下册第十七章-勾股定理定向测评试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年人教版八年级数学下册第十七章-勾股定理定向测评试题(含解析).docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十七章-勾股定理定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,OAOB,则数轴上点A所表示的数是( )A1.5BCD22、我国古代数学家赵爽的“勾股圆方图”是由四个全
2、等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b(ba),则(a+b)2的值为( )A24B25C49D133、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得米,在点C正上方找一点D(即),测得,则景观池的长AB为( )A5米B6米C8米D10米4、如图,在ABC中,已知ABAC3,BC4,若D,E是边BC的两个“黄金分割”点,则ADE的面积为()A104B35CD2085、以下列各组数为边长,不能构成直角三角形的是( )A3,4,5B,C1.5,2,3D9,12,156、如图,斜坡B
3、C的长度为4米为了安全,决定降低坡度,将点C沿水平距离向外移动4米到点A,使得斜坡AB的长度为4米,则原来斜坡的水平距离CD的长度是( )米A2B4C2D67、如图,在ABC中,ADBC于点D,若AB3,BD2,CD1,则AC的长为()A6BCD48、有下列四个命题是真命题的个数有( )个垂直于同一条直线的两条直线互相垂直;有一个角为的等腰三角形是等边三角形;三边长为,3的三角形为直角三角形;顶角和底边对应相等的两个等腰三角形全等A1B2C3D49、在棱长为1的正方体中,顶点A,B的位置如图所示,则A、B两点间的距离为( )A1BCD10、如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是,
4、内壁高若这支铅笔长为,则这只铅笔在笔筒外面部分长度不可能的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,ACB90,AC4,BC3,射线CD与边AB交于点D,点E、F分别为AD、BD中点,设点E、F到射线CD的距离分别为m、n,则mn的最大值为_2、如图,ABBC,CDBC,垂足分别为B,C,P为线段BC上一点,连结PA,PD已知AB5,DC4,BC12,则AP+DP的最小值为_3、ABC中,ABAC5,BC8,BD为AC边的高线,则BD的长为_4、已知在ABC中,AB,AC2,BC边上的高为,那么BC的长是_5、如图,将一副三板按图所
5、示放置,DAEABC90,D45,C30,点E在AC上,过点A作AFBC交DE于点F,则_三、解答题(5小题,每小题10分,共计50分)1、如图,牧童在A处放牛,其家在B处,A、B到河岸l的距离分别为AC=1km,BD=3km,且CD=3km(1)牧童从A处将牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短请在图中画出饮水的位置(保留作图痕迹),并说明理由(2)求出(1)中的最短路程2、如图:一个圆柱的底面周长为16cm,高为6cm,BC是上底面的直径,一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,求蚂蚁爬行的最短路程(要求画出平面图形) 3、如图,在1010的网格中建立如图的平面直角坐标
6、系,线段AB两个端点的坐标分别是A(1,4),B(3,1)(1)画出线段AB关于y轴对称的线段CD,则点A的对应点C的坐标是 ;(2)将线段AB先向左平移4个单位,再向下平移5个单位,画出平移后的对应线段EF,观察线段EF与DC是否关于某直线对称?若是,则对称轴是 ;E点坐标是 ;(3)ABP是以AB为直角边的格点等腰直角三角形(A,B,P三点都是小正方形的顶点),则点P的坐标是 4、已知:如图,在RtABC中,两直角边AC6,BC8(1)求AB的长;(2)求斜边上的高CD的长5、如图,中,M是的中点,垂足为点N,D是的中点,连接,过点B作的垂线交的延长线于点E,若,则的长为_-参考答案-一、
7、单选题1、C【分析】利用勾股定理求得线段OB的长,结合数轴即可得出结论【详解】解:OBOAOB,OA数轴上点A表示的数是:故选:C【点睛】本题主要考查了数轴,勾股定理利用勾股定理求得线段OB的长度是解题的关键2、C【分析】根据勾股定理,可得 ,再由四个全等的直角三角形的面积之和等于大正方形的面积减去小正方形的面积,可得 ,然后利用完全平方公式,即可求解【详解】解:根据题意得: ,四个全等的直角三角形的面积之和为 , ,即 , 故选:C【点睛】本题主要考查了勾股定理,完全平方公式的应用,勾股定理,完全平方公式是解题的关键3、D【分析】利用勾股定理求出CD的长,进而求出BC的长, 即可求解【详解】
8、解:, , , , , , , ,故选:D【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理4、A【分析】过点A作AFBC于点F,由题意易得,再根据点,是边的两个黄金分割点,可得,根据勾股定理可得,进而可得,然后根据三角形的面积计算公式进行求解【详解】解:过点A作AFBC于点F,如图所示:,在RtAFB中,点,是边的两个黄金分割点,DF=EF,;故选:A【点睛】本题主要考查二次根式的运算、勾股定理及等腰三角形的性质与判定,熟练掌握二次根式的运算、勾股定理及等腰三角形的性质与判定是解题的关键5、C【分析】根据勾股定理的逆定理逐一判断即可【详解】解:32+4252,A可以;,B可以;1.52+
9、2232,C不能;92+122152,D可以,故选:C【点睛】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键6、A【分析】设米,米,根据勾股定理用含的代数式表示,进而列出方程,解方程得到答案【详解】解:设米,米,在中,即,在中,即,解得:,即米,故选:A【点睛】本题考查的是勾股定理的应用,解题的关键是灵活运用勾股定理列出方程7、B【分析】由勾股定理先求出RtADB的直角边AD的长,然后再根据勾股定理求RtADC的斜边AC的长即可【详解】解:如图,在ABC中,ADBC于点D,ADBADC90在RtADB中,AB3,BD2,AD=,在RtADC中,AD,CD1,AC故选:B【点睛
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 八年 级数 下册 第十七 勾股定理 定向 测评 试题 解析
限制150内