2022年人教版九年级数学下册第二十八章-锐角三角函数综合训练练习题(含详解).docx
《2022年人教版九年级数学下册第二十八章-锐角三角函数综合训练练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年人教版九年级数学下册第二十八章-锐角三角函数综合训练练习题(含详解).docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB是的直径,点C是上半圆的中点,点P是下半圆上一点(不与点A,B重合),AD平分交PC于点D,则
2、PD的最大值为( )A B C D2、如图,在扇形AOB中,AOB90,以点A为圆心,OA的长为半径作交于点C,若OA2,则阴影部分的面积为()A BCD3、如图,射线,点C在射线BN上,将ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,设,若y关于x的函数图象(如图)经过点,则的值等于( )ABCD4、如图,一辆小车沿斜坡向上行驶米,小车上升的高度米,则斜坡的坡度是()A:B:C:D:5、如图,飞机于空中A处测得目标B处的俯角为,此时飞机的高度AC为a,则A,B的距离为( )AatanBCDcos6、如图,在矩形ABCD中,对角线AC,BD相交于点O,
3、AB6,DAC60,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:BDEEFC;EDEC;ADFECF;点E运动的路程是2,其中正确结论的序号为()ABCD7、某人沿坡度的斜坡向上前进了10米,则他上升的高度为( )A5米BCD8、图是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图所示的四边形若,则的值为( )ABCD9、如图,在中,点D为AB边的中点,连接CD,若,则的值为( )ABCD10、如图,过点O、A(1,0)、B(0,)作M,D为M上不同于点O、A的点,则ODA的度
4、数为()A60B60或120C30D30或150第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,等腰直角三角形ABC,C=90,AC=BC=4,M为AB的中点,PMQ=45,PMQ的两边分别交BC于点P,交AC于点Q,若BP=3,则AQ=_2、_3、如图,小明家附近有一观光塔CD,他发现当光线角度变化时,观光塔的影子在地面上的长度也发生变化经测量发现,当小明站在点A处时,塔顶D的仰角为37,他往前再走5米到达点B(点A,B,C在同一直线上),塔顶D的仰角为53,则观光塔CD的高度约为 _.(精确到0.1米,参考数值:tan37,tan53)4、如图所示,河堤的横断
5、面是四边形ABCD,ADBC,m,点A到BC的距离为m,斜坡AB的坡度为1:3,斜坡CD的坡角为45,则四边形ABCD的面积为_5、如图,在正方形中,点为边中点,连接,与对角线交于点,连接,且与交于点,连接,则下列结论:;其中正确的是_(填序号即可)三、解答题(5小题,每小题10分,共计50分)1、6tan230sin602tan452、如图,在ABC中,ACB90,AC4cm,BC3cm,动点P从点A出发,以每秒2cm的速度沿折线ABBC向终点C运动,同时动点Q从点C出发,以每秒1cm的速度向终点A运动以PQ为底边向下作等腰RtPQR,设点P运动的时间为t秒(0t4)(1)直接写出AB的长;
6、(2)用含t的代数式表示BP的长;(3)当点R在ABC的内部时,求t的取值范围3、如图,内接于,交于点,垂足为点,连接, (1)求的度数;(2)过点作,垂足分别为点,连接OA,OC,OB,EH,FH,若的半径为1,求的值4、5、如图,ABC中,ADBC,垂足是D,若BC14,AD12,求:(1)AC的值(2)sinC的值-参考答案-一、单选题1、A【分析】根据点C是半圆的中点,得到AC= BC,直径所对的圆周角是90得到ACB=90,同弧所对圆周角相等得到APC=ABC=45,AD平分PAB得到 BAD = DAP,结合外角的性质可证CAD = CDA,由线段的和差解得PD=P-CD=P-1,
7、由此可知当CP为直径时,PD最大,最后根据三角函数可得答案【详解】解:点C是半圆的中点, AC= BCAB是直径ACB=90CAB = CBA= 45同弧所对圆周角相等APC=ABC=45AD平分PAB BAD = DAPCDA= DAP+ APC = 45+ DAPCAD= CAB+BAD = 45+ BADCAD = CDAAC=CD=1PD=P-CD=P-1当CP为直径时,PD最大RtABC中,ACB = 90,CAB = 45, CP的最大值是 PD的最大值是 -1,故选:A【点睛】本题考查了同弧所对圆周角相等、直径所对的圆周角是90、角平分线的性质、三角形外角的性质、三角函数的知识,
8、做题的关键是熟练掌握相关的知识点,灵活综合的运用2、B【分析】连接OC、AC,作CDOA于D,可证AOC为等边三角形,得出OAC60,可求CD=ODtan60=,可求SOAC,求出BOC30,再求出,S扇形OAC,可得阴影部分的面积()【详解】解:连接OC、AC,作CDOA于D,OAOCAC,AOC为等边三角形,OAC60,CDOA,CDO=90,OD=AD=,CD=ODtan60=,SOAC,BOC30,S扇形OAC,则阴影部分的面积(),故选:B【点睛】本题考查扇形面积,等边三角形判定与性质,锐角三角函数,掌握扇形面积,等边三角形判定与性质,锐角三角函数是解题关键3、D【分析】由题意可得四
9、边形ABQP是平行四边形,可得APBQx,由图象可得当x9时,y2,此时点Q在点D下方,且BQx9时,y2,如图所示,可求BD7,由折叠的性质可求BC的长,由锐角三角函数可求解【详解】解:AMBN,PQAB,四边形ABQP是平行四边形,APBQx,由图可得当x9时,y2,此时点Q在点D下方,且BQx9时,QD=y2,如图所示,BDBQQDxy7,将ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,ACBN,BCCDBD, cosB,故选:D【点睛】本题考查了平行四边形的判定与性质,折叠的性质,锐角三角函数等知识理解函数图象上的点的具体含义是解题的关键4、A【分析】直接用勾股定理求出水平距
10、离为12,再根据坡度等于竖直距离:水平距离求解即可【详解】解:由勾股定理得,水平距离,斜坡的坡度:,故选A【点睛】本题主要考查了坡度和勾股定理,解题的关键在于能够熟练掌握坡度的定义5、C【分析】根据题意可知,根据,即可求得【详解】解:飞机于空中A处测得目标B处的俯角为,AC为a,故选C【点睛】本题考查了正弦的应用,俯角的意义,掌握正弦的概念是解题的关键6、D【分析】根据DAC60,ODOA,得出OAD为等边三角形,再由DFE为等边三角形,得EDFEFDDEF60,即可得出结论正确;如图,连接OE,利用SAS证明DAFDOE,再证明ODEOCE,即可得出结论正确;通过等量代换即可得出结论正确;如
11、图,延长OE至E,使OEOD,连接DE,通过DAFDOE,DOE60,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段OE运动到E,从而得出结论正确;【详解】解:DAC60,ODOA,OAD为等边三角形,DOADAOODA60,ADOD,DFE为等边三角形,EDFEFDDEF60,DFDE,BDE+FDOADF+FDO60,BDEADF,ADF+AFD+DAF180,ADF+AFD180DAF120,EFC+AFD+DFE180,EFC+AFD180DFE120,ADFEFC,BDEEFC,故结论正确;如图,连接OE,由得ADOD,DFDE,ODA60,EDF60,ADFODE,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 九年级 数学 下册 第二 十八 锐角三角 函数 综合 训练 练习题 详解
限制150内