2022年沪科版九年级数学下册第24章圆专项测试试题(无超纲).docx
《2022年沪科版九年级数学下册第24章圆专项测试试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年沪科版九年级数学下册第24章圆专项测试试题(无超纲).docx(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A3B4C5D62、如图,为的直径,为外一点
2、,过作的切线,切点为,连接交于,点在右侧的半圆周上运动(不与,重合),则的大小是( )A19B38C52D763、下面的图形中既是轴对称图形又是中心对称图形的是( )ABCD4、如图,在中,将绕点A顺时针旋转60得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )A1B2C3D45、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70,则P的度数为( ) A70B50C20D406、如图,CD是的高,按以下步骤作图:(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点(2)作直线GH交AB于点E(3)在直线GH上截取(4)以点F为圆心,AF长为半径画
3、圆交CD于点P则下列说法错误的是( ) ABCD7、在ABC中,点O为AB中点以点C为圆心,CO长为半径作C,则C 与AB的位置关系是( )A相交B相切C相离D不确定8、如图,是的直径,弦,垂足为,若,则( )A5B8C9D109、如图,在中,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )ABCD10、如图是一个含有3个正方形的相框,其中BCDDEF90,AB2,CD3,EF5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、边长相等、各内角均为120的六边形A
4、BCDEF在直角坐标系内的位置如图所示,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60,经过2021次旋转之后,点B的坐标是_2、如图,PA,PB是的切线,切点分别为A,B若,则AB的长为_3、九章算术是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是_步4、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形
5、外接圆的半径为_cm,直角三角形的面积是_5、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则_三、解答题(5小题,每小题10分,共计50分)1、如图,在直角坐标系中,将ABC绕点A顺时针旋转90(1)画出旋转后的AB1C1,并写出B1、C1的坐标;(2)求线段AB在旋转过程中扫过的面积2、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF(1)若,求的度数;(2)若,求的大小;(3)猜想CF,BF,AF之间的数量关系,并证明3、如图,在ABC中,C90,点O为边BC上一点以O为圆心,OC为半径的O与边AB相切于点
6、D(1)尺规作图:画出O,并标出点D(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接CD,若CDBD,且AC6求劣弧的长4、如图,已知为的直径,切于点C,交的延长线于点D,且(1)求的大小;(2)若,求的长5、如图,正方形ABCD的顶点A、B在x轴的负半轴上,顶点CD在第二象限将正方形ABCD绕点A按顺时针方向旋转,B、C、D的对应点分别为B1、C1、D1,且D1、C1、O三点在一条直线上记点D1的坐标是(m,n),C1的坐标是(p,q)(1)设DAD130,n2,求证:OD1的长度;(2)若DAD190,m,n满足m+n4,p2+q225,求p+q的值-参考答案-一、单选题1、A【
7、分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键2、B【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 为的直径, 为的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.3、A【详解】解:A、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对
8、称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键4、B【分析】由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2【详解】由题意以及旋转的性质知AD=AB,BAD=60ADB=ABDADB+ABD+BAD=180ADB
9、=ABD=60故为等边三角形,即AB= AD =BD=2则CD=BC-BD=4-2=2故选:B【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形5、D【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90,又由圆周角定理,可求得AOB的度数,继而可求得答案【详解】解:连接OA,OB,PA,PB为O的切线,OAP=OBP=90,
10、ACB=70,AOB=2P=140,P=360-OAP-OBP-AOB=40故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用6、C【分析】连接AF、BF,由作法可知,FE垂直平分AB,再根据可得AFE=45,进而得出AFB90,根据等腰直角三角形和圆周角定理可判断哪个结论正确【详解】解:连接AF、BF,由作法可知,FE垂直平分AB,故A正确;CD是的高,故B正确;,故C错误;,AFE=45,同理可得BFE=45,AFB90,故D正确;故选:C【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年沪科版 九年级 数学 下册 24 专项 测试 试题 无超纲
限制150内