2022年必考点解析北师大版九年级数学下册第三章-圆专题测试练习题(无超纲).docx
《2022年必考点解析北师大版九年级数学下册第三章-圆专题测试练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析北师大版九年级数学下册第三章-圆专题测试练习题(无超纲).docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第三章 圆专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A,B,C均在上,当时,的度数是( )A65B60C55D502、如图,AB是O的直径,CD为弦,CDAB于
2、点E,则下列结论中不成立是( )A弧AC弧ADB弧BC弧BDCCEDEDOEBE3、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )A1cmB2cmC3cmD4cm4、如图,的半径为,AB是的弦,于D,交于点C,且,弦AB的长为( )ABCD5、半径为10的O,圆心在直角坐标系的原点,则点(8,6)与O的位置关系是()A在O上B在O内C在O外D不能确定6、如图,中,则等于( )ABCD7、如图,正方形ABCD内接于O,点P在上,则下列角中可确定大小的是()APCBBPBCCBPCDPBA8、如图,一块直角三角板的30角的顶点P落在O上,两边分别交
3、O于A,B两点,连结AO,BO,则AOB的度数是()A30B60C80D909、下列说法正确的是( )A弧长相等的弧是等弧B直径是最长的弦C三点确定一个圆D相等的圆心角所对的弦相等10、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( )A20B25C30D40第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,它是在纸板上剪下的一个半圆和一个圆形,它们恰好能组成一个圆锥模型已知半圆的半径为1,则该圆锥的侧面积是 _2、如图,某小区的一个圆形管道破裂,修理工人准备更换一段新管道,现在量得污水水面宽度为80cm,水面到管道顶部的距离为20cm,则修理
4、工人应准备的新管道的内直径是_cm3、如图,一扇形纸扇完全打开后,外侧两竹条OA和OC的夹角为120,OA的长为25cm,贴纸部分的宽AB为20cm,则一面贴纸的面积为_(结果保留)4、在ABC中,已知ABC90,BAC30,BC1,如图所示,将ABC绕点A按逆时针方向旋转90后得到ABC则图中阴影部分的面积为_5、如图,以矩形的对角线为直径画圆,点、在该圆上,再以点为圆心,的长为半径画弧,交于点若,则图中影部分的面积和为 _(结果保留根号和三、解答题(5小题,每小题10分,共计50分)1、下面是小石设计的“过三角形一个顶点作其对边的平行线”的尺规作图过程已知:如图,求作:直线BD,使得作法:
5、如图,分别作线段AC,BC的垂直平分线,两直线交于点O;以点O为圆心,OA长为半径作圆;以点A为圆心,BC长为半径作孤,交于点D;作直线BD所以直线BD就是所求作的直线根据小石设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:连接AD,点A,B,C,D在上,_(_)(填推理的依据)2、如图,是的直径,四边形内接于,是的中点,交的延长线于点(1)求证:是的切线;(2)若,求的长3、在一块大铁皮上裁剪如图所示圆锥形的烟囱帽,它的底面直径为80cm,母线为50cm,求裁剪的面积4、如图,内接于O,且为O的直径,交于点,在的延长线上取点,使得DCEB(1)求
6、证:是O的切线;(2)若,求AE的长5、如图,圆是的内切圆,其中,求其内切圆的半径-参考答案-一、单选题1、C【分析】先由OB=OC,得到OCB=OBC=35,从而可得BOC=180-OCB-OBC=110,再由圆周角定理即可得到答案【详解】解:OB=OC,OCB=OBC=35,BOC=180-OCB-OBC=110,故选C【点睛】本题主要考查了圆周角定理,三角形内角和定理,等腰三角形的性质,熟知圆周角定理是解题的关键2、D【分析】根据垂径定理解答【详解】解:AB是O的直径,CD为弦,CDAB于点E,弧AC弧AD,弧BC弧BD,CEDE,故选:D【点睛】此题考查了垂径定理:垂直于弦的直径平分弦
7、,并且平分弦所对的两条弧,熟记定理是解题的关键3、B【分析】连接OB,过点O作OCAB于点D,交O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可【详解】解:连接OB,过点O作OCAB于点D,交O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC=5cm,在RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键4、A【分析】如图所示,连接OA,由垂径定理得到AB=2AD,先求出,即可利用勾股定理
8、求出,即可得到答案【详解】解:如图所示,连接OA,半径OCAB,AB=2AD,ODA=90,故选:A【点睛】本题主要考查了垂径定理和勾股定理,熟知垂径定理是解题的关键5、A【分析】先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得【详解】解:由两点距离公式可得点(8,6)到原点的距离为,又的半径为10,点(8,6)到圆心的距离等于半径,点(8,6)在上,故选A【点睛】本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键6、C【分析】由题意直接根据圆周角定理进行分析即可得出答案.【详解】解:ABC和AOC是弧AC所对的圆周角和圆
9、心角,ABC=AOC=.故选:C.【点睛】本题考查圆周角定理,注意掌握同弧(等弧)所对的圆周角是圆心角的一半7、C【分析】由题意根据正方形的性质得到BC弧所对的圆心角为90,则BOC=90,然后根据圆周角定理进行分析求解【详解】解:连接OB、OC,如图,正方形ABCD内接于O,所对的圆心角为90,BOC=90,BPC=BOC=45故选:C【点睛】本题考查圆周角定理和正方形的性质,确定BC弧所对的圆心角为90是解题的关键8、B【分析】延长AO交O于点D,连接BD,根据圆周角定理得出D=P=30,ABD=90,由直角三角形的性质可推得AB=BO=AO,然后根据等边三角形的判定与性质可以得解【详解】
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 必考 解析 北师大 九年级 数学 下册 第三 专题 测试 练习题 无超纲
限制150内