2021-2022学年基础强化北师大版九年级数学下册第三章-圆专项攻克试卷(名师精选).docx
《2021-2022学年基础强化北师大版九年级数学下册第三章-圆专项攻克试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版九年级数学下册第三章-圆专项攻克试卷(名师精选).docx(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第三章 圆专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,面积为18的正方形ABCD内接于O,则O的半径为( )ABC3D2、如图,四边形ABCD内接于,若四边形ABC
2、O是菱形,则的度数为( )A45B60C90D1203、如图,点A,B,C都在O上,连接CA,CB,OA,OB若AOB=140,则ACB为( )A40B50C70D804、如图,中,点O是的内心则等于( )A124B118C112D625、如图,小王将一长为4,宽为3的长方形木板放在桌面上按顺时针方向做无滑动的翻滚,当第二次翻滚时被桌面上一小木块挡住,此时木板与桌面成30角,则点A运动到A2时的路径长为()A10B4CD6、下列说法正确的是( )A等弧所对的圆周角相等B平分弦的直径垂直于弦C相等的圆心角所对的弧相等D过弦的中点的直线必过圆心7、如图,在RtABC中,以边上一点为圆心作,恰与边,
3、分别相切于点,则阴影部分的面积为( )ABCD8、已知正三角形外接圆半径为,这个正三角形的边长是( )ABCD9、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切时,点P的坐标是()ABC或D(2,0)或(5,0)10、已知O的半径等于5,圆心O到直线l的距离为6,那么直线l与O的公共点的个数是( )A0B1C2D无法确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知某扇形的半径为5cm,圆心角为120,那么这个扇形的弧长为 _cm2、如图,AB、CD为一个正多边形的两条边,O为该正多边形的中心,
4、若ADB12,则该正多边形的边数为 _3、如图,在平面直角坐标系中,点,的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为_4、一块直角三角板的30角的顶点A落在上,两边分别交于B、C两点,若弦BC长为4,则的半径为_5、一条弧所对的圆心角为,弧长等于,则这条弧的半径为_三、解答题(5小题,每小题10分,共计50分)1、如图1,BC是O的直径,点A,P在O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQAP,交PC 的延长线于点Q,AQ交O于点D,已知AB3,AC4(1)求证:APQABC(2)如图2,当点C为的中点时,求AP的长(3)连结AO,OD,当PA
5、C与AOD的一个内角相等时,求所有满足条件的AP的长2、如图,是的直径,四边形内接于,是的中点,交的延长线于点(1)求证:是的切线;(2)若,求的长3、如图,O是ABC的外接圆,AD是O的直径,F是AD延长线上一点,连接CD,CF,且:CF是O的切线(1)求证:DCFCAD(2)探究线段CF,FD,FA的数量关系并说明理由;(3)若cosB,AD2,求FD的长4、如图,AB为的直径,点C,D在上,求证:DE是的切线5、如图,AB是O的直径,点C是圆上一点,弦CDAB于点E,且DCAD,过点A作O的切线,过点C作DA的平行线,两直线交于点F,FC的延长线与AB的延长线交于点G(1)求证:FG是O
6、的切线;(2)求证:四边形AFCD是菱形-参考答案-一、单选题1、C【分析】连接OA、OB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3【详解】解:如图,连接OA,OB,则OA=OB,四边形ABCD是正方形,是等腰直角三角形,正方形ABCD的面积是18,即:故选C【点睛】本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键2、B【分析】设ADC=,ABC=,由菱形的性质与圆周角定理可得 ,求出即可解决问题【详解】解:设ADC=,ABC=; 四边形ABCO是菱形, ABC=AOC; ADC=; 四边形为圆的内接四边形,+=180, ,
7、解得:=120,=60,则ADC=60, 故选:B【点睛】该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.3、C【分析】根据圆周角的性质求解即可【详解】解:AOB=140,根据同弧所对的圆周角是圆心角的一半,可得,ACB=70,故选:C【点睛】本题考查了圆周角定理,解题关键是明确同弧所对的圆周角是圆心角的一半4、B【分析】根据三角形内心的性质得到OBC=ABC=25,OCB=ACB=37,然后根据三角形内角和计算BOC的度数【详解】解:点O是ABC的内心,OB平分ABC,OC平分ACB,OBC=A
8、BC=50=25,OCB=ACB=74=37,BOC=180-OBC-OCB=180-25-37=118故选B【点睛】本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角5、C【分析】根据题意可得:第一次转动的路径是以点B为圆心,AB长为半径的弧长,此时圆心角 ,第二次转动的路径是以点C为圆心,A1C长为半径的弧长,此时圆心角 ,再由弧长公式,即可求解【详解】解:如图,根据题意得: , ,第一次转动的路径是以点B为圆心,AB长为半径的弧长,此时圆心角 , ,第二次转动的路径是以点C为圆心,A
9、1C长为半径的弧长,此时圆心角 , ,点A运动到A2时的路径长为 故选:C【点睛】本题主要考查了求弧长,熟练掌握扇形的弧长公式是解题的关键6、A【分析】根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可【详解】解:A.同弧或等弧所对的圆周角相等,所以A选项正确;B.平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B选项错误;C、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以C选项错误;D.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D选项错误.故选A.【点睛】本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知
10、识点灵活运用相关知识成为解答本题的关键7、A【分析】连结OC,根据切线长性质DC=AC,OC平分ACD,求出OCD=OCA=30,利用在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可【详解】解:连结OC,以边上一点为圆心作,恰与边,分别相切于点A, ,DC=AC,OC平分ACD,ACD=90-B=60,OCD=OCA=30,在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,OD=OA=1,DC=AC=,DOC=360-OAC-ACD-ODC=360-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 基础 强化 北师大 九年级 数学 下册 第三 专项 攻克 试卷 名师 精选
限制150内