2022年最新浙教版初中数学七年级下册第四章因式分解定向攻克试题(名师精选).docx
《2022年最新浙教版初中数学七年级下册第四章因式分解定向攻克试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年最新浙教版初中数学七年级下册第四章因式分解定向攻克试题(名师精选).docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学七年级下册第四章因式分解定向攻克(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、如果多项式x25x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.52、下列因式分解正确的是( )A.x2-4=(x+4)(x-4)B.x2+2x+1=x(x+2)+1C.3mx-6my=3m(x-6y)D.x2y-y3=y(x+y)(x-y)3、下列四个式子从左到右的变形是因式分解的为()A.(xy)(xy)y2x2B.a2+2ab+b21(a+b)21C.x481y4(
2、x2+9y2)(x+3y)(x3y)D.(a2+2a)28(a2+2a)+12(a2+2a)(a2+2a8)+124、下列等式从左到右的变形,属于因式分解的是()A.m (a+b)ma+mbB.x2+2x+1x(x+2)+1C.x2+xx2(1+)D.x29(x+3)(x3)5、下列各式能用平方差公式分解因式的是( )A.B.C.D.6、下列等式从左到右的变形,属于因式分解的是()A.x2+2x1(x1)2B.(a+b)(ab)a2b2C.x2+4x+4(x+2)2D.ax2aa(x21)7、多项式x2y(ab)y(ba)提公因式后,余下的部分是()A.x2+1B.x+1C.x21D.x2y+
3、y8、下列因式分解正确的是()A.x24(x+4)(x4)B.4a28aa(4a8)C.a2+2a+2(a+1)2+1D.x22x+1(x1)29、多项式的公因式是()A.x2y3B.x4y5C.4x4y5D.4x2y310、若多项式能因式分解为,则k的值是( )A.12B.12C.D.611、对于任何整数a,多项式都能( )A.被3整除B.被4整除C.被5整除D.被a整除12、下列多项式能用公式法分解因式的是()A.m2+4mnB.m2+n2C.a2+ab+b2D.a24ab+4b213、对于有理数a,b,c,有(a+100)b(a+100)c,下列说法正确的是()A.若a100,则bc0B
4、.若a100,则bc1C.若bc,则a+bcD.若a100,则abc14、下列因式分解正确的是()A.x29(x3)(x3)B.x2x6(x2)(x3)C.3x6y33(x2y)D.x22x1(x1)215、把多项式a39a分解因式,结果正确的是()A.a(a29)B.(a+3)(a3)C.a(9a2)D.a(a+3)(a3)二、填空题(10小题,每小题4分,共计40分)1、由多项式乘法:(x+a)(x+b)x2+(a+b)x+ab,将该式子从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab(x+a)(x+b),请用上述方法将多项式x25x+6因式分解的结果是 _
5、2、已知x+y2,xy4,则x2y+xy2_3、多项式的公因式是_4、分解因式:x41_5、如果,那么的值为_6、因式分解x2+ax+b时,李明看错了a的值,分解的结果是(x+6)(x2),王勇看错了b的值,分解的结果是(x+2)(x3),那么x2+ax+b因式分解正确的结果是_7、分解因式:3x2y12xy2_8、将分解因式_9、若关于的二次三项式可以用完全平方公式进行因式分解,则_10、分解因式:_三、解答题(3小题,每小题5分,共计15分)1、材料一:对于个位数字不为零的任意三位数M,将其个位数字与百位数字对调得到M,则称M为M的“倒序数”,将一个数与它的“倒序数”的差的绝对值与99的商
6、记为F(M)例如523为325的“倒序数”,F(325)2;材料二:对于任意三位数满足,ca且a+c2b,则称这个数为“登高数”(1)F(935);F(147);(2)任意三位数M,求F(M)的值;(3)已知S、T均为“登高数”,且2F(S)+3F(T)24,求S+T的最大值2、分解因式,细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的因式分解了,过程如下:这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)因式分解:;(2)已知的三边a,b,c满足,判断的形状3、因式分解:6m3n+4mn
7、22mn-参考答案-一、单选题1、C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.2、D【分析】根据提公因式法、公式法逐项进行因式分解,再进行判断即可.【详解】解:A.x2-4=(x+2)(x-2),因此选项A不符合题意;B.x2+2x+1=(x+1)2,因此选项B不符合题意;C.3mx-6my
8、=3m(x-2y),因此选项C不符合题意;D.x2y-y3=y(x2-y2)=y(x+y)(x-y),因此选项D符合题意;故选:D.【点睛】本题考查提公因式法、公式法分解因式,掌握a2-b2=(a+b)(a-b),a22ab+b2=(ab)2是正确应用的前提.3、C【分析】根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A选项,B,D选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;C选项,符合因式分解的定义,符合题意;故选:C.【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.4、D【分析
9、】根据因式分解的定义是把一个多项式化为几个整式的积的形式的变形,可得答案.【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、因为的分母中含有字母,不是整式,所以没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D.【点睛】本题主要考查了因式分解的定义,熟练掌握因式分解是把一个多项式化为几个整式的积的形式的变形是解题的关键.5、D【分析】根据平方差公式逐个判断即可.【详解】解:A.是m和n的平方和,不是m和n的平方差,不能用平方差公式分解因式,故
10、本选项不符合题意;B.是2x和y的平方和,不是2x和y的平方差,不能用平方差公式分解因式,故本选项不符合题意;C.是2a和b的平方和的相反数,不能用平方差公式分解因式,故本选项不符合题意;D.,能用平方差公式分解因式,故本选项符合题意;故选:D.【点睛】本题考查了平方差公式分解因式,能熟记公式a2-b2=(a+b)(a-b)是解此题的关键.6、C【分析】根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.【详解】A. x2+2x1(x1)2,故A不符合题意;B. a2b2=(a+b)(ab),故B不符合题意;C. x2+4x+4(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 浙教版 初中 数学 年级 下册 第四 因式分解 定向 攻克 试题 名师 精选
限制150内