2021-2022学年基础强化沪科版九年级数学下册第24章圆综合测试试卷(含答案详解).docx
《2021-2022学年基础强化沪科版九年级数学下册第24章圆综合测试试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化沪科版九年级数学下册第24章圆综合测试试卷(含答案详解).docx(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切时
2、,点P的坐标是()ABC或D(2,0)或(5,0)2、如图,在ABC中,BAC130,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD当点A,D,E在同一条直线上时,则BAD的大小是()A80B70C60D503、点P(3,1)关于原点对称的点的坐标是( )A(3,1)B(3,1)C(3,1)D(3,1)4、如图图案中,不是中心对称图形的是( )ABCD5、如图,是的直径,弦,垂足为,若,则( )A5B8C9D106、下面的图形中既是轴对称图形又是中心对称图形的是( )ABCD7、如图,在中,将绕点C逆时针旋转90得到,则的度数为( )A105B120C135D150
3、8、如图,PA,PB是O的切线,A,B为切点,PA4,则PB的长度为( )A3B4C5D69、下列说法正确的个数有( )方程的两个实数根的和等于1;半圆是弧;正八边形是中心对称图形;“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;如果反比例函数的图象经过点,则这个函数图象位于第二、四象限A2个B3个C4个D5个10、如图,AB,BC,CD分别与O相切于E、F、G三点,且ABCD,BO3,CO4,则OF的长为()A5BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为_(结果保留)2
4、、已知正多边形的半径与边长相等,那么正多边形的边数是_3、点(2,-3)关于原点的对称点的坐标为_4、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则BDC的度数为_5、如图,点D为边长是的等边ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持ADB120不变,则四边形ADBC的面积S的最大值是 _三、解答题(5小题,每小题10分,共计50分)1、如图,已知AB是O的直径,O过BC的中点D,且(1)求证:DE是O的切线;(2)若,求的半径2、阅读以下材料,并按要求完成相应的任务:从正方形的一
5、个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型半角模型可证出多个几何结论,例如:如下图1,在正方形中,以为顶点的,、与、边分别交于、两点易证得大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、三点共线,进而可证明,故任务:如图3,在四边形中,以为顶点的,、与、边分别交于、两点请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由3、如图AB是O的直径,弦CDAB于点E,作FAC=BAC,过点C作CFAF于点F(1)求证:CF是O的切线;(2)若sinCAB=,求=_(直接写出答案)4、如图,AB是O的
6、直径,点C是O上一点,连接BC,半径OD弦BC(1)求证:弧AD=弧CD;(2)连接AC、BD相交于点F,AC与OD相交于点E,连接CD,若O的半径为5,BC=6,求CD和EF的长5、如图,ABC内接于O,D是O的直径AB的延长线上一点,DCBOAC过圆心O作BC的平行线交DC的延长线于点E(1)求证:CD是O的切线;(2)若CD4,CE6,求O的半径及tanOCB的值-参考答案-一、单选题1、C【分析】由题意根据函数解析式求得A(-4,0),B(0-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,根据相似三角形的性质即可得到结论
7、【详解】解:直线交x轴于点A,交y轴于点B,令x=0,得y=-3,令y=0,得x=-4,A(-4,0),B(0,-3),OA=4,OB=3,AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,ADP=AOB=90,PAD=BAO,APDABO,AP= ,OP= 或OP= ,P或P,故选:C【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键2、A【分析】根据三角形旋转得出,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到DAC=50,由此即可求解【详解】证明:绕点C逆时
8、针旋转得到,ADC=DAC,点A,D,E在同一条直线上,DAC=50,BAD=BAC-DAC=80故选A【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质3、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1)故选:C【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形4、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180,如果旋转后的图形能够与原
9、来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念中心对称图形是要寻找对称中心,旋转180后重合5、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接,是的直径,弦,设的半径为,则在中,即解得即故选C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题
10、的关键6、A【详解】解:A、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键7、B【分析】由题意易得,然后根据三角形外角的性质可求解【详解】解:由旋转的性质可得:,
11、;故选B【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键8、B【分析】由切线的性质可推出,再根据直角三角形全等的判定条件“HL”,即可证明,即得出【详解】PA,PB是O的切线,A,B为切点,在和中,故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质熟练掌握切线的性质是解答本题的关键9、B【分析】根据所学知识对五个命题进行判断即可【详解】1、=12-41=-30,故方程无实数根,故本命题错误;2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;3、八边形绕中心旋转180以后仍然与原图重合,故本命题正确;4、抛硬币无论抛多少,出现正反
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 基础 强化 沪科版 九年级 数学 下册 24 综合测试 试卷 答案 详解
限制150内