人教版八年级数学下册第十八章-平行四边形同步训练试题(含答案及详细解析).docx
《人教版八年级数学下册第十八章-平行四边形同步训练试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《人教版八年级数学下册第十八章-平行四边形同步训练试题(含答案及详细解析).docx(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十八章-平行四边形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF若EF,BD2,则菱形A
2、BCD的面积为( )A2BC6D82、如图所示,正方形ABCD的面积为16,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PDPE的和最小,则最小值为( )A2B3C4D63、在ABC中,AD是角平分线,点E、F分别是线段AC、CD的中点,若ABD、EFC的面积分别为21、7,则的值为( )ABCD4、如图,在长方形ABCD中,AB6,BC8,点E是BC边上一点,将ABE沿AE折叠,使点B落在点F处,连接CF,当CEF为直角三角形时,则BE的长是( )A4B3C4或8D3或65、如图,在四边形中,ABCD,添加下列一个条件后,一定能判定四边形是平行四边形的是( )ABC
3、D6、已知,四边形ABCD的对角线AC和BD相交于点O设有以下条件:ABAD;ACBD;AOCO,BODO;四边形ABCD是矩形;四边形ABCD是菱形;四边形ABCD是正方形那么,下列推理不成立的是()ABCD7、在菱形ABCD中,两条对角线AC=10,BD=24,则此菱形的边长为( )A14B25C26D138、如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得点A,C之间的距离为6cm,点B,D之间的距离为8cm,则纸条的宽为( )A5cmB4.8cmC4.6cmD4cm9、已知直线,点P在直线l上,点,点,若是直角三角形,则点P的个数有( )A1个B2个C3个D4个1
4、0、如图,在ABC中,ABC90,AC18,BC14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若MDBA,则四边形DMBE的周长为( )A16B24C32D40第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,每个小正方形的边长都为1,ABC是格点三角形,点D为AC的中点,则线段BD的长为 _2、如图,四边形AOBC是正方形,曲线CP1P2P3叫做“正方形的渐开线”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圆心依次按点A,O,B,C循环,点A的坐标为(2,0),按此规律进行下去,则点P2021的坐标为 _3、能使平行四
5、边形ABCD为正方形的条件是_(填上一个符合题目要求的条件即可)4、若一个菱形的两条对角线的长为3和4,则菱形的面积为_5、如图,正方形ABCD的面积为18,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 _三、解答题(5小题,每小题10分,共计50分)1、如图,等腰ABC中,ABAC,BAC90,BE平分ABC交AC于E,过C作CDBE于D,(1)如图1,求证:CDBE(2)如图2,过点A作AFBE,写出AF,BD,CD之间的数量关系并说明理由2、在中,斜边,过点作,以AB为边作菱形ABEF,若,求的面积3、如图,在平行四边形ABCD
6、中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,且ADAF(1)判断四边形ABFC的形状并证明;(2)若AB3,ABC60,求EF的长4、如图,ACB90,CDAB于点D,AF平分CAB交CD于点E,交BC于点F,作EGAB交CB于点G(1)求证:CEF是等腰三角形;(2)求证:CFBG;(3)若F是CG的中点,EF1,求AB的长5、如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点求证:(1)DAGDCG;(2)GCCH-参考答案-一、单选题1、A【解析】【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一
7、半可得答案【详解】解:E,F分别是AD,CD边上的中点,EF=,AC=2EF=2,又BD=2,菱形ABCD的面积S=ACBD=22=2,故选:A【点睛】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键2、C【解析】【分析】先求得正方形的边长,依据等边三角形的定义可知BE=AB=4,连接BP,依据正方形的对称性可知PB=PD,则PE+PD=PE+BP由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值为BE的长【详解】解:连接BP四边形ABCD为正方形,面积为16,正方形的边长为4ABE为等边三角形,BE=AB=4四边形ABCD为正方形,AB
8、P与ADP关于AC对称BP=DPPE+PD=PE+BP由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值=BE=4故选:C【点睛】本题考查的是等边三角形的性质、正方形的性质和轴对称最短路线问题,熟知“两点之间,线段最短”是解答此题的关键3、B【解析】【分析】过点A作ABC的高,设为x,过点E作EFC的高为,可求出,再由点E、F分别是线段AC、CD的中点,可得出,进而求出,再利用角平分线的性质可得出的值为即可求解【详解】解:过点A作ABC的高,设为x,过点E作EFC的高为, , , ,点E、F分别是线段AC、CD的中点, , , , ,过点D作DMAB,DNAC,A
9、D为平分线,DM=DN,即: ,故选:B【点睛】本题考查角平分线性质定理及三角形中位线的性质,解题关键是求出4、D【解析】【分析】当为直角三角形时,有两种情况:当点F落在矩形内部时连接,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点A、F、C共线,即沿折叠,使点B落在对角线上的点F处,则,可计算出然后利用勾股定理求解即可;当点F落在边上时此时为正方形,由此即可得到答案【详解】解:当为直角三角形时,有两种情况:当点F落在矩形内部时,如图所示连接,在中,ABE沿折叠,使点B落在点F处,BE=EF,当为直角三角形时,只能得到,点A、F、C共线,即ABE沿折叠,使点B落在
10、对角线上的点F处,设BE=EF=x,则EC=BC-BE=8-x,解得,BE=3;当点F落在边上时,如图所示,由折叠的性质可知AB=AF,BE=EF,AEF=B=90,FEC=90,为正方形,综上所述,BE的长为3或6故选D【点睛】本题考查折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等也考查了矩形的性质,正方形的性质与判定以及勾股定理解题的关键是要注意本题有两种情况,需要分类讨论,避免漏解5、C【解析】【分析】由平行线的性质得,再由,得,证出,即可得出结论【详解】解:一定能判定四边形是平行四边形的是,理由如下:,又,四边形是平行四边形,故选:C【点睛】本题考查了平行四边形的判定,解题的
11、关键是熟练掌握平行四边形的判定,证明出6、C【解析】【分析】根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可【详解】解:A、可以说明,一组邻边相等的矩形是正方形,故A正确B、可以说明四边形是平行四边形,再由,一组临边相等的平行四边形是菱形,故B正确C、,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误D、可以说明四边形是平行四边形,再由可得:对角线相等的平行四边形为矩形,故D正确故选:C【点睛】本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键7、D【解析】【分析】由菱形的性质和勾股定理即可求得AB的长【详解】解
12、:四边形ABCD是菱形,AC=10,BD=24, AB=BC=CD=AD,ACBD,OB=OD=BD=12,OA=OC=AC=5,在RtABO中,AB=13,故选:D【点睛】本题考查了菱形的性质、勾股定理等知识,熟练掌握菱形的性质,由勾股定理求出AB=13是解题的关键8、B【解析】【分析】由题意作ARBC于R,ASCD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS得平行四边形ABCD是菱形,再根据勾股定理求出AB,最后利用菱形ABCD的面积建立关系得出纸条的宽AR的长【详解】解:作ARBC于R,ASCD于S,连接AC、BD交于点O由题意知:ADBC,ABCD,四边形ABCD是平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 下册 第十八 平行四边形 同步 训练 试题 答案 详细 解析
限制150内