知识点详解人教版八年级数学下册第十八章-平行四边形专题测试试题(无超纲).docx
《知识点详解人教版八年级数学下册第十八章-平行四边形专题测试试题(无超纲).docx》由会员分享,可在线阅读,更多相关《知识点详解人教版八年级数学下册第十八章-平行四边形专题测试试题(无超纲).docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十八章-平行四边形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABCD中,AD=2AB,F是AD的中点,作CEAB于E,在线段AB上,连接EF、CF则下列结论:B
2、CD=2DCF;ECF=CEF;SBEC=2SCEF;DFE=3AEF,其中一定正确的是( )ABCD2、如图,已知平行四边形ABCD的面积为8,E、F分别是BC、CD的中点,则AEF的面积为()A2B3C4D53、如图,在中,AD平分,E是AD中点,若,则CE的长为( )ABCD4、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )A(7,3)B(8,2)C(3,7)D(5,3)5、如图所示,在 ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AD于点E,BC于点F, ,则 ABCD的面积为( ) A24
3、B32C40D486、菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF若EF,BD2,则菱形ABCD的面积为( )A2BC6D87、如图,下列条件中,能使平行四边形ABCD成为菱形的是( )ABCD8、如图所示,公路AC、BC互相垂直,点M为公路AB的中点,为测量湖泊两侧C、M两点间的距离,若测得AB的长为6km,则M、C两点间的距离为()A2.5kmB4.5kmC5kmD3km9、如图,将矩形纸片按如图所示的方式折叠,得到菱形,若,则的长为( )A2BC4D10、顺次连接矩形各边中点得到的四边形是( )A平行四边形B矩形C菱形D正方形第卷(非选择题 70分
4、)二、填空题(5小题,每小题4分,共计20分)1、如图,在正方形ABCD中,点O在内,则的度数为_2、如图,在ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC6,PQ4,则PCAQ的最小值为_3、点D、E、F分别是ABC三边的中点,ABC的周长为24,则DEF的周长为_4、如图,在中,为上的两个动点,且,则的最小值是_5、如图,在长方形ABCD中,在DC上找一点E,沿直线AE把折叠,使D点恰好落在BC上,设这一点为F,若的面积是54,则的面积=_三、解答题(5小题,每小题10分,共计50分)1、如图,在平行四边形中,点在上由点向点出
5、发,速度为每秒;点在边上,同时由点向点运动,速度为每秒当点运动到点时,点,同时停止运动连接,设运动时间为秒(1)当为何值时,四边形为平行四边形?(2)设四边形的面积为,求与之间的函数关系式(3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数(4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由2、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为_3、已知:如图,AD是BC上的高
6、线,CE是AB边上的中线,于G(1)若,求线段AC的长;(2)求证:4、如图,在长方形ABCD中,AB3,BC4,点E是BC边上一点,连接AE,将B沿直线AE折叠,使点B落在点处(1)如图1,当点E与点C重合时,与AD交于点F,求证:FAFC;(2)如图2,当点E不与点C重合,且点在对角线AC上时,求CE的长5、ABC为等边三角形,AB4,ADBC于点D,E为线段AD上一点,AE以AE为边在直线AD右侧构造等边AEF连结CE,N为CE的中点(1)如图1,EF与AC交于点G,连结NG,求线段NG的长;连结ND,求DNG的大小(2)如图2,将AEF绕点A逆时针旋转,旋转角为M为线段EF的中点连结D
7、N、MN当30120时,猜想DNM的大小是否为定值,并证明你的结论-参考答案-一、单选题1、B【解析】【分析】根据易得DF=CD,由平行四边形的性质ADBC即可对作出判断;延长EF,交CD延长线于M,可证明AEFDMF,可得EF=FM,由直角三角形斜边上中线的性质即可对作出判断;由AEFDMF可得这两个三角形的面积相等,再由MCBE易得SBEC2SEFC ,从而是错误的;设FEC=x,由已知及三角形内角和可分别计算出DFE及AEF,从而可判断正确与否【详解】F是AD的中点,AF=FD,在ABCD中,AD=2AB,AF=FD=CD,DFC=DCF,ADBC,DFC=FCB,DCF=BCF,BCD
8、=2DCF,故正确;延长EF,交CD延长线于M,四边形ABCD是平行四边形,ABCD,A=MDF,F为AD中点,AF=FD,在AEF和DFM中, ,AEFDMF(ASA),FE=MF,AEF=M,CEAB,AEC=90,AEC=ECD=90, FM=EF,FC=FE,ECF=CEF,故正确;EF=FM,SEFC=SCFM , MCBE,SBEC2SEFC , 故SBEC=2SCEF , 故错误; 设FEC=x,则FCE=x,DCF=DFC=90x,EFC=1802x,EFD=90x+1802x=2703x,AEF=90x,DFE=3AEF,故正确,故选:B 【点睛】本题考查了平行四边形的性质,
9、全等三角形的判定与性质,直角三角形斜边上中线的性质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点2、B【解析】【分析】连接AC,由平行四边形的性质可得,再由E、F分别是BC,CD的中点,即可得到,由此求解即可【详解】解:如图所示,连接AC,四边形ABCD是平行四边形,ADBC,AD=BC,AB=CD,ABCD,E、F分别是BC,CD的中点,故选B【点睛】本题主要考查了平行四边形的性质,与三角形中线有关的面积问题,解题的关键在于能够熟练掌握平行四边形的性质3、B【解析】【分析】根据三角形内角和定理求出BAC,根据角平分线的定义DAB=B,求出AD,根据直角三角形的性质解答即可【
10、详解】解:ACB=90,B=30,BAC=90-30=60,AD平分BAC,DAB=BAC=30,DAB=B,AD=BD=a,在RtACB中,E是AD中点,CE=AD=,故选: B【点睛】本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键4、A【解析】【分析】利用平行四边形的对边平行且相等的性质,先利用对边平行,得到D点和C点的纵坐标相等,再求出CD=AB=5,得到C点横坐标,最后得到C点的坐标【详解】解: 四边形ABCD为平行四边形。且。C点和D的纵坐标相等,都为3A点坐标为(0,0),B点坐标为(5,0), D点坐标为(2,3),C点横坐标为,
11、 点坐标为(7,3)故选:A【点睛】本题主要是考察了平行四边形的性质、利用线段长求点坐标,其中,熟练应用平行四边形对边平行且相等的性质,是解决与平行四边形有关的坐标题的关键5、B【解析】【分析】先根据平行四边形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,从而可得,然后根据平行四边形的性质即可得【详解】解:四边形是平行四边形,在和中,则的面积为,故选:B【点睛】本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键6、A【解析】【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案【详解】解:E,F
12、分别是AD,CD边上的中点,EF=,AC=2EF=2,又BD=2,菱形ABCD的面积S=ACBD=22=2,故选:A【点睛】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键7、C【解析】【分析】根据菱形的性质逐个进行证明,再进行判断即可【详解】解:A、ABCD中,本来就有AB=CD,故本选项错误;B、ABCD中本来就有AD=BC,故本选项错误;C、ABCD中,AB=BC,可利用邻边相等的平行四边形是菱形判定ABCD是菱形,故本选项正确;D、ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,即可判定ABCD是矩形,而不能判定ABCD是菱形,故本选项错误故选:C【
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 知识点 详解 人教版 八年 级数 下册 第十八 平行四边形 专题 测试 试题 无超纲
限制150内