《2022年最新沪科版九年级数学下册第24章圆定向测评试题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年最新沪科版九年级数学下册第24章圆定向测评试题(含详解).docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,BAC130,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD当点A,D,
2、E在同一条直线上时,则BAD的大小是()A80B70C60D502、如图,ABC内接于O,BAC30,BC6,则O的直径等于()A10B6C6D123、计算半径为1,圆心角为的扇形面积为( )ABCD4、点P(3,2)关于原点O的对称点的坐标是()A(3,2)B(3,2)C(3,2)D(2,3)5、如图,在中,将绕点A顺时针旋转60得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )A1B2C3D46、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是( )AB1C2D7、如图,点A,B,C均在O上,连
3、接OA,OB,AC,BC,如果OAOB,那么C的度数为( )A22.5B45C90D67.58、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )A不变B面积扩大为原来的3倍C面积扩大为原来的9倍D面积缩小为原来的9、下列图案中既是轴对称图形,又是中心对称图形的是( )ABCD10、如图图案中,不是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一条弧所对的圆心角为,弧长等于,则这条弧的半径为_2、把一个正六边形绕其中心旋转,至少旋转_度,可以与自身重合3、如图,在平面直角坐标系xOy中,P为x轴正半轴上一点已知点,为的外
4、接圆(1)点M的纵坐标为_;(2)当最大时,点P的坐标为_4、在平面直角坐标系中,点关于原点对称的点的坐标是_5、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是_三、解答题(5小题,每小题10分,共计50分)1、如图,已知为的直径,切于点C,交的延长线于点D,且(1)求的大小;(2)若,求的长2、如图,在RtABC中,B90,BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的O经过点D(1)求证:BC是O的切线;(2)若点F是劣弧AD的中点,且CE3,试求阴影部分的面积3、如图,AB是O的直径,弦CDAB于点E,AM是ACD的外角DAF的平分线(1)求证:AM
5、是O的切线;(2)连接CO并延长交AM于点N,若O的半径为2,ANC = 30,求CD的长4、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题(1)图1中的“弦图”的四个直角三角形组成的图形是 对称图形(填“轴”或“中心”)(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影
6、;图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形5、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则_-参考答案-一、单选题1、A【分析】根据三角形旋转得出,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到DAC=50,由此即可求解【详解】证明:绕点C逆时针旋转得到,ADC=DAC,点A,D,E在同一条直线上,DAC=50,BAD=BAC-DAC=80故选A【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于
7、熟练掌握旋转的性质2、D【分析】连接OB,OC,根据圆周角定理求出BOC的度数,再由OB=OC判断出OBC是等边三角形,由此可得出结论【详解】解:连接OB,OC,BAC=30,BOC=60OB=OC,BC=6,OBC是等边三角形,OB=BC=6O的直径等于12故选:D【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键3、B【分析】直接根据扇形的面积公式计算即可【详解】故选:B【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键4、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),即关于原点的对称点,横纵坐标都变成相
8、反数”解答【详解】解:点P(3,2)关于原点O的对称点P的坐标是(3,2)故选:B【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键5、B【分析】由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2【详解】由题意以及旋转的性质知AD=AB,BAD=60ADB=ABDADB+ABD+BAD=180ADB=ABD=60故为等边三角形,即AB= AD =BD=2则CD=BC-BD=4-2=2故选:B【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边
9、三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形6、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,B
10、M=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60=30,CG=AB=5=2.5,MG=CG=,HN=,故选A【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点7、B【分析】根据同弧所对的圆周角是圆心角的一半即可得【详解】解:,故选:B【点睛】题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键8、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们
11、的面积,从而进行比较即可得答案【详解】设原来扇形的半径为r,圆心角为n,原来扇形的面积为,扇形的半径扩大为原来的3倍,圆心角缩小为原来的,变化后的扇形的半径为3r,圆心角为,变化后的扇形的面积为,扇形的面积不变故选:A【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键9、B【分析】根据中心对称图形与轴对称图形的概念逐项分析【详解】解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,是中心对称图形,故该选项不正
12、确,不符合题意;故选B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键10、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C【点睛】本题考查了中心对称图形的知识
13、,解题的关键是掌握中心对称图形的概念中心对称图形是要寻找对称中心,旋转180后重合二、填空题1、9cm【分析】由弧长公式即可求得弧的半径【详解】故答案为:9cm【点睛】本题考查了扇形的弧长公式,善于对弧长公式变形是关键2、60【分析】正六边形连接各个顶点和中心,这些连线会将360分成6分,每份60因此至少旋转60,正六边形就能与自身重合【详解】3606=60故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键3、5 (4,0) 【分析】(1)根据点M在线段AB的垂直平分线上求解即可;(2)点P在M切点处时,最大,而四边形OPMD是矩形,由勾股定理求解即可【详
14、解】解:(1)M为ABP的外接圆,点M在线段AB的垂直平分线上,A(0,2),B(0,8),点M的纵坐标为:,故答案为:5;(2)过点,作M与x轴相切,则点M在切点处时,最大,理由:若点是x轴正半轴上异于切点P的任意一点,设交M于点E,连接AE,则AEB=APB,AEB是AE的外角,AEBAB,APBAB,即点P在切点处时,APB最大,M经过点A(0,2)、B(0,8),点M在线段AB的垂直平分线上,即点M在直线y=5上,M与x轴相切于点P,Px轴,从而MP=5,即M的半径为5,设AB的中点为D,连接MD、AM,如上图,则MDAB,AD=BD=AB=3,BM=MP=5,而POD=90,四边形O
15、PMD是矩形,从而OP=MD,由勾股定理,得MD=,OP=MD=4,点P的坐标为(4,0),故答案为:(4,0)【点睛】本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键4、(3,4)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数【详解】:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),故答案为:(3,4)【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数5、【分析】绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的
16、两个点,横坐标、纵坐标分别互为相反数,即可求解【详解】解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是故答案为:【点睛】本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键关于原点对称的两个点,横坐标、纵坐标分别互为相反数三、解答题1、(1)45(2)【分析】(1)连接OC,根据切线的性质得到OCCD,根据圆周角定理得到DOC=2CAD,进而证明D=DOC,根据等腰直角三角形的性质求出D的度数;(2)根据等腰三角形的性质求出OC,根据弧长公式计算即可(1)连接 , ,即 , 是的切线, ,即 (2) , , 的长【点睛】本题考查的是切线的性质、圆周
17、角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键2、(1)见解析;见解析;(2)【分析】(1)连接OD,由角平分线的性质解得,再根据内错角相等,两直线平行,证明,继而由两直线平行,同旁内角互补证明即可解题;连接DE,由弦切角定理得到,再证明,由相似三角形对应边成比例解题;(2)证明是等边三角形,四边形DOAF是菱形,结合扇形面积公式解题【详解】解:(1)连接OD,是BAC的平分线是O的切线;连接DE,是O的切线,是直径(2)连接DE、OD、DF、OF,设圆的半径为R,点F是劣弧AD的中点,OF是DA中垂线DF=AF,是等边三角形,四边形DOAF是菱形,【点睛】本题考查圆的综合题
18、,涉及切线的判定与性质、平行四边形的性质、等边三角形的判定与性质、相似三角形的判定与性质、扇形面积等知识,综合性较强,有难度,掌握相关知识是解题关键3、(1)见解析(2)CD=2【分析】(1)由题意易得BC=BD,DAM=DAF,则有CAB=DAB,进而可得BAM=90,然后问题可求证;(2)由题意易得CD/AM,ANC=OCE=30,然后可得OE=1,CE=,进而问题可求解(1)证明:AB是O的直径,弦CDAB于点EBC=BDCAB=DABAM是DAF的平分线DAM=DAFCAD+DAF=180DAB+DAM=90即BAM=90,ABAMAM是O的切线(2)解:ABCD,ABAM CD/AM
19、ANC=OCE=30在RtOCE中,OC=2OE=1,CE=AB是O的直径,弦CDAB于点ECD=2CE=2【点睛】本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键4、(1)中心(2)见解析【分析】(1)利用中心对称图形的意义得到答案即可;(2)每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形(1)图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,故答案为:中心;(2)如图2是轴对称图形而不是中心对称图形;图3既是轴对称图形,又是中心对称图形【点睛】本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可5、2+【分析】连接AC,CM,AB,过点C作CHOA于H,设OC=a利用勾股定理构建方程解决问题即可【详解】解:连接AC,CM,AB,过点C作CHOA于H,设OC=aAOB=90,AB是直径,A(-4,0),B(0,2),AMC=2AOC=120,在RtCOH中,在RtACH中,AC2=AH2+CH2,a=2+ 或2-(因为OCOB,所以2-舍弃),OC=2+,故答案为:2+【点睛】本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题
限制150内