精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解月度测试试卷(含答案详细解析).docx
《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解月度测试试卷(含答案详细解析).docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解月度测试试卷(含答案详细解析).docx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学七年级下册第四章因式分解月度测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:213(1)3,263313,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.92622、下列各式从左到右的变形属于因式分解的是( )A.B.C.D.3、下列分解因式正确的是()A.100p225q2(10p+5q)(10p5q)B.x2+x6(x3)(x+2
2、)C.4m2+n2(2m+n)(2mn)D.4、下列各式从左到右的变形,属于因式分解的是( )A.B.C.D.5、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解6、下列等式中,从左到右是因式分解的是( )A.B.C.D.7、下列各式从左到右的变形是因式分解的是( )A.axbxc(ab)xcB.(ab)(ab)a2b2C.(ab)2a22abb2D.a25a6(a6)(a1)8、下列等式从左到右的变形,属于因式分解的是( )A.a2b2(ab)(ab)B.a(xy)axayC.x22x1x(x2)1D.(x1)(x3
3、)x24x39、的值为( )A.B.C.D.35310、下面从左到右的变形中,因式分解正确的是()A.2x24xy2x(x+2y)B.x2+9(x+3)2C.x22x1(x1)2D.(x+2)(x2)x2411、下列各式中,不能用完全平方公式分解因式的是()A.x2+2x+1B.16x2+1C.a2+4ab+4b2D.12、把代数式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)13、下列各式中,正确的因式分解是( )A.B.C.D.14、下列多项式:;.能用公式法分解因式的是( )A.B.C.D.15、将边长为m的
4、三个正方形纸片按如图1所示摆放并构造成边长为n的大正方形时,三个小正方形的重叠部分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m和n的长方形时,所得长方形的面积为35.则图2中长方形的周长是()A.24B.26C.28D.30二、填空题(10小题,每小题4分,共计40分)1、分解因式:_;2、因式分解:_3、多项式各项的公因式是_4、边长为a、b的长方形,它的周长为14,面积为10,则的值为_5、分解因式_6、因式分解:_7、若多项式9x2+kxy+4y2能用完全平方公式进行因式分解,则k_8、因式分解:x26x_;(3mn)23m+n_9、因式分解:_10、若xz
5、2,zy1,则x22xyy2_三、解答题(3小题,每小题5分,共计15分)1、若一个三位数(其中a、b、c不全相等且都不为0),重新排列各数位上的数字可得到一个最大数和一个最小数,此最大数和最小数的差叫做原数的差数,记为例如,536的差数(1)_,_;(2)若一个三位数(其中且都不为0),求证:能被99整除;(3)若s、t是各数位上的数字均不为0且互不相等两个三位自然数,s的个位数字为1,十位数字是个位数字的3倍,百位数字为x,t的百位数字为y,十位数字是百位数字的2倍,t的个位数字与s的百位数字相同(,),若能被3整除,能被11整除,求的值2、教科书中这样写道:“我们把多项式a2+2ab+b
6、2及a2-2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方,再减去这个项,使整个式子的值不变,这种方法叫做配方法配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求最值问题例如:分解因式x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);例如求代数式2x2+4x-6=2(x+1)2-8,当x= -1时,2x2+4x-6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2-4m-5
7、=(2)当a,b为何值时,多项式2a2+3b2-4a+12b+18有最小值,求出这个最小值(3)当a,b为何值时,多项式a2 - 4ab+5b2 - 4a+4b+27有最小值,并求出这个最小值3、分解因式,细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的因式分解了,过程如下:这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)因式分解:;(2)已知的三边a,b,c满足,判断的形状-参考答案-一、单选题1、B【分析】根据“和谐数”的概念找出公式:(2k+1)3(2k1)32(12k2+1)(其
8、中k为非负整数),然后再分析计算即可.【详解】解:(2k+1)3(2k1)3(2k+1)(2k1)(2k+1)2+(2k+1)(2k1)+(2k1)22(12 k2+1)(其中 k为非负整数),由2(12k2+1)2019得,k9,k0,1,2,8,9,即得所有不超过2019的“和谐数”,它们的和为13(1)3+(3313)+(5333)+(173153)+(193173)193+16860.故选:B.【点睛】本题考查了新定义,以及立方差公式,有一定难度,重点是理解题意,找出其中规律是解题的关键所在.2、B【分析】根据因式分解的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式
9、因式分解,可得答案.【详解】解:A、,属于整式乘法;B、,属于因式分解;C、,没把一个多项式转化成几个整式积的形式,不属于因式分解;D、,等式左边不是多项式,不属于因式分解;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.3、C【分析】根据因式分解的各种方法逐个判断即可.【详解】解:A.,故本选项不符合题意;B.,故本选项不符合题意;C.故本选项符合题意;D.,所以,故本选项不符合题意;故选:C.【点睛】此题考查了因式分解的方法,熟练掌握因式分解的有关方法是解题的关键.4、B【分析】根据因式分解是把一个
10、多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、是把一个单项式转化成两个单项式乘积的形式,故A错误;B、把一个多项式转化成三个整式乘积的形式,故B正确;C、是把一个多项式转化成一个整式和一个分式乘积的形式,故C错误;D、是整式的乘法,故D错误;故选:B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.5、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义判断即可.【详解】解:,属于整式乘法,不属于因式分解;,等式从左到右的变形属于因式分解;故选:D.【点睛
11、】本题考查了整式的乘法和因式分解的定义,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6、B【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.7、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 解析 2021 2022 学年 浙教版 初中 数学 年级 下册 第四 因式分解 月度 测试 试卷 答案 详细
链接地址:https://www.taowenge.com/p-32546770.html
限制150内