2021-2022学年人教版九年级数学下册第二十七章-相似专项训练试题(含详细解析).docx
《2021-2022学年人教版九年级数学下册第二十七章-相似专项训练试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版九年级数学下册第二十七章-相似专项训练试题(含详细解析).docx(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十七章-相似专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,点D、E分别是AB、AC的中点,若ABC的面积为16,则四边形BCED的面积为( )A8B12
2、C14D162、下列图形中,ABC与DEF不一定相似的是( )ABCD3、如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中相似的是( )ABCD4、如图在正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与ABC相似的三角形所在的网格图形是()ABCD5、如图,在Rt中,在Rt中,点在上,交于点,交于点,当时,的长为( )A4B6CD6、如图,已知点M是ABC的重心,AB18,MNAB,则MN的值是()A9BCD67、如图,利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB2m,BC12m,则建筑物CD的高度为( )A10.5mB10mC9mD11m8
3、、如图,D、E分别是ABC的边AB、BC上的点,且DEAC,AE、CD相交于点O,若SDOE:SCOA1:25,则的值为( )ABCD9、若,则为( )A1:2B2:1C2:3D1:310、如图,若双曲线y与边长为5的等边AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为( )A2BC2D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知 , 那么 的值为_2、如图,在ABC中,D、E分别是边BC、AC上的点,AD与BE相交于点F,若E为AC的中点,BD:DC2:3,则AF:FD的值是 _3、如图所示,在四边形中,ADBC,如果要使ABCADC,
4、那么还要补充的一个条件是_(只要求写出一个条件即可)4、如图,已知O是坐标原点,点A、B分别在x轴,y轴上,OA=1,OB=2,若点D在x轴下方,且使得AOB和OAD相似(不包括全等),则点D的坐标为_5、如图,双曲线经过Rt斜边上的中点A,与BC交于点D,则_三、解答题(5小题,每小题10分,共计50分)1、如图,在矩形ABCD中,E是BC的中点,DFAE,垂足为F(1)求证:ABEDFA;(2)若AB6,BC4,求DF的长2、如图,已知EACDAB,DB,求证:ABCADE3、如图,是矩形的对角线,过点作于点,分别与的延长线,交于点、,连接(1)求证:(2)若,求的长4、在等边三角形ABC
5、中,点D是边AB的中点,过点D作DEBC交AC于点E,点F在BC边上,连接DF,EF(1)如图1,当DF是BDE的平分线时,若AE2,求EF的长;(2)如图2,当DFDE时,设AEa,则EF的长为 (用含a的式子表示)5、如图,在中,于点D,E为AC的中点,ED、CB的延长线交于点F求证:(1);(2)-参考答案-一、单选题1、B【解析】【分析】直接利用三角形中位线定理得出DEBC,DE=BC,再利用相似三角形的判定与性质得出即可【详解】解:在ABC中,点D、E分别是AB、AC的中点,DEBC,DE=BC,ADE=B,AED=C,ADEABC,=,SABC=16,S四边形BCED= SABC-
6、SADE=16-4=12故选B【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出ADEABC是解题关键2、A【解析】【分析】根据相似三角形的判定定理进行解答【详解】解:A、当EF与BC不平行时,ABC与DEF不一定相似,故本选项符合题意;B、由ABC=EFC=90,ACB=EDF可以判定ABCDEF,故本选项不符合题意;C、由圆周角定理推知B=F,又由对顶角相等得到ACB=EDF,可以判定ABCDEF,故本选项不符合题意;D、由圆周角定理得到:ACB=90,所以根据ACB=CDB=90,ABC=CBD,可以判定ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了相似三角形
7、的判定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理3、B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解【详解】解:由题意得: 、A选项中的三角形三边长分别为,1,与ABC的三边对应边不成比例关系,不符合题意;B选项中的三角形三边长分别为,1,对应边成比例,符合题意;C选项中的三角形三边长分别为,3,与ABC的三边对应边不成比例关系,不符合题意;D选项中的三角形三边长分别为,2,与ABC的三边对应边不成比例关系,不符合题意;故选B【点晴】此题主要考查相似三角形的判定和勾股定理,解题的关键是熟知相似三角形的判定定理4、C【解析】【分析】可利用正方形的边
8、把对应的线段表示出来,利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题【详解】解:根据勾股定理,AC,BC,所以,夹直角的两边的比为2,观各选项,只有C选项三角形符合,与所给图形的三角形相似故选:C【点睛】此题考查了勾股定理在直角三角形中的运用,三角形对应边比值相等判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键5、B【解析】【分析】如图作PQAB于Q,PRBC于R由QPERPF,推出,可得PQ2PR2BQ,由PQ/BC,可得AQ:QP:APAB:BC:AC3:4:5,设PQ4x,则AQ3x,AP5x,BQ2x,可得2x3x6,求出x即可解决问题【详解】解:如
9、图作PQAB于Q,PRBC于RPQBQBRBRP90,四边形PQBR是矩形,QPR90MPN,QPERPF,QPERPF,PQ2PR2BQ,PQ/BC,AQPABC,AQ:QP:APAB:BC:AC3:4:5,设PQ4x,则AQ3x,AP5x,BQ2x,2x3x6,x,AP5x6故选:B【点睛】本题考查相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题6、D【解析】【分析】根据重心的概念得到,证明CMNCDB,根据相似三角形的性质列式计算,得到答案【详解】点M是ABC的重心,AB18,AD=DB=AB=9,MN/AB,CMNCDB,
10、即解得:MN=6,故选:D【点睛】本题考查的是三角形的重心的概念和性质、相似三角形的判定和性质,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键7、A【解析】【分析】直接利用已知得出ABEACD,再利用相似三角形的性质得出答案【详解】解:由题意可得:BEDC,则ABEACD,故,标杆BE高1.5m,AB=2m,BC=12m,解得:DC=10.5m故选:A【点睛】此题主要考查了相似三角形的应用,正确得出相似三角形是解题关键8、B【解析】【分析】根据可得,再根据相似三角形的性质可得和与的相似比为1:5,进而可得,最后用BC表示EC即可求出【详解】解:
11、,与的相似比为1:5故选:B【点睛】本题考查相似三角形的判定定理和性质,综合应用这些知识点是解题关键9、A【解析】【分析】可写成的形式,解得的值,即可得到的值【详解】解:可写成故选A【点睛】本题考察了比例,多项式与单项式的除法解题的关键在于将比例的符号作为除号或分号进行处理10、D【解析】【分析】过点C作CEOB于点E,过点D作DFOB于点F,则OECBFD,由OC=3BD,得到OE=3BF,设BF=x,得到点C和点D的坐标,然后利用反比例函数图象上点的坐标特征列出方程,求得x的值,然后得到实数k的值【详解】解:过点C作CEOB于点E,过点D作DFOB于点F,则OEC=BFD=90,AOB是等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 人教版 九年级 数学 下册 第二 十七 相似 专项 训练 试题 详细 解析
限制150内